Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Thermally activated delayed fluorescence materials: innovative design and advanced application in biomedicine, catalysis and electronics

Ehsan Ullah Mughal, Syeda Fariha Kainat, Abdulaziz M. Almohyawi, Nafeesa Naeem, Essam M. Hussein, Amina Sadiq, Ahmad Abd-El-Aziz, Ning Ma, Alaa S. Abd-El-Aziz, A. Timoumi, Ziad Moussa, Nermeen Saeed Abbas and Saleh A. Ahmed
RSC Advances 15 (10) 7383 (2025)
https://doi.org/10.1039/D5RA00157A

Simultaneous Multi‐Resonant Thermally Activated Delayed Fluorescence and Room Temperature Phosphorescence from Biluminescent Nitrogen‐Containing Indolocarbazoles

Oliver S. Lee, Aidan P. McKay, David B. Cordes, Stuart L. Warriner, Malte C. Gather and Eli Zysman‐Colman
Advanced Science (2025)
https://doi.org/10.1002/advs.202503175

Metal complex-based TADF: design, characterization, and lighting devices

Afsaneh Farokhi, Sophia Lipinski, Luca M. Cavinato, Hashem Shahroosvand, Babak Pashaei, Soheila Karimi, Sebastiano Bellani, Francesco Bonaccorso and Rubén D. Costa
Chemical Society Reviews 54 (1) 266 (2025)
https://doi.org/10.1039/D3CS01102J

Exploring the Versatile Uses of Triplet States: Working Principles, Limitations, and Recent Progress in Phosphorescence, TADF, and TTA

Larissa G. Franca, David G. Bossanyi, Jenny Clark and Paloma Lays dos Santos
ACS Applied Optical Materials 2 (12) 2476 (2024)
https://doi.org/10.1021/acsaom.4c00041

Non‐approximative Kinetics of Triplet‐Triplet Annihilation at Room Temperature: Solvent Effects on Delayed Fluorescence

Victoria M. Bjelland, Harue Nakashima, Naoaki Hashimoto, et al.
ChemPhotoChem 7 (9) (2023)
https://doi.org/10.1002/cptc.202300064

Tailoring Donor‐Acceptor Emitters to Minimise Localisation Induced Quenching of Thermally Activated Delayed Fluorescence

T. J. Penfold and J. Eng
ChemPhotoChem 7 (3) (2023)
https://doi.org/10.1002/cptc.202200243

Molecular design of phenazine-5,10-diyl-dibenzonitriles and the impact on their thermally activated delayed fluorescence properties

Dietrich Püschel, Julia Wiefermann, Simon Hédé, et al.
Journal of Materials Chemistry C 11 (26) 8982 (2023)
https://doi.org/10.1039/D3TC01228J

Interplay of molecular dynamics and radiative decay of a TADF emitter in a glass-forming liquid

John R. Swartzfager, Gary Chen, Tommaso Francese, Giulia Galli and John B. Asbury
Physical Chemistry Chemical Physics 25 (4) 3151 (2023)
https://doi.org/10.1039/D2CP05138A

9-Borafluoren-9-yl and diphenylboron tetracoordinate complexes of F- and Cl-substituted 8-quinolinolato ligands: synthesis, molecular and electronic structures, fluorescence and application in OLED devices

Carina B. Fialho, Tiago F. C. Cruz, Ana I. Rodrigues, et al.
Dalton Transactions 52 (15) 4933 (2023)
https://doi.org/10.1039/D3DT00496A

Matrix Dynamics and Their Crucial Role in Non-radiative Decay during Thermally Activated Delayed Fluorescence

Gary Chen, John R. Swartzfager and John B. Asbury
Journal of the American Chemical Society 145 (46) 25495 (2023)
https://doi.org/10.1021/jacs.3c11719

Thermally Activated Delayed Fluorescence Sensitizers As Organic and Green Alternatives in Energy-Transfer Photocatalysis

Ryoga Hojo, Alexander M. Polgar and Zachary M. Hudson
ACS Sustainable Chemistry & Engineering 10 (30) 9665 (2022)
https://doi.org/10.1021/acssuschemeng.2c01426

Thermally activated delayed fluorescence in luminescent cationic copper(i) complexes

Christian Sandoval-Pauker, Mireya Santander-Nelli and Paulina Dreyse
RSC Advances 12 (17) 10653 (2022)
https://doi.org/10.1039/D1RA08082B

Understanding and Designing Thermally Activated Delayed Fluorescence Emitters: Beyond the Energy Gap Approximation

Julien Eng and Thomas J. Penfold
The Chemical Record 20 (8) 831 (2020)
https://doi.org/10.1002/tcr.202000013

Multiresonant Thermally Activated Delayed Fluorescence Emitters Based on Heteroatom‐Doped Nanographenes: Recent Advances and Prospects for Organic Light‐Emitting Diodes

Subeesh Madayanad Suresh, David Hall, David Beljonne, Yoann Olivier and Eli Zysman‐Colman
Advanced Functional Materials 30 (33) (2020)
https://doi.org/10.1002/adfm.201908677

Luminescent Copper(I) complexes as promising materials for the next generation of energy-saving OLED devices

Leandro P. Ravaro, Kassio P.S. Zanoni and Andrea S.S. de Camargo
Energy Reports 6 37 (2020)
https://doi.org/10.1016/j.egyr.2019.10.044

Recent Advances in Solid‐State Lighting Devices Using Transition Metal Complexes Exhibiting Thermally Activated Delayed Fluorescent Emission Mechanism

Gilbert Umuhire Mahoro, Julio Fernandez‐Cestau, Jean‐Luc Renaud, et al.
Advanced Optical Materials 8 (16) (2020)
https://doi.org/10.1002/adom.202000260

Recent Progress in Emerging Near-Infrared Emitting Materials for Light-Emitting Diode Applications

Yingqi Zheng and Xiaozhang Zhu
Organic Materials 02 (04) 253 (2020)
https://doi.org/10.1055/s-0040-1716488

Recent development of phenanthroimidazole-based fluorophores for blue organic light-emitting diodes (OLEDs): an overview

Jairam Tagare and Sivakumar Vaidyanathan
Journal of Materials Chemistry C 6 (38) 10138 (2018)
https://doi.org/10.1039/C8TC03689F

The theory of thermally activated delayed fluorescence for organic light emitting diodes

T. J. Penfold, F. B. Dias and A. P. Monkman
Chemical Communications 54 (32) 3926 (2018)
https://doi.org/10.1039/C7CC09612G

Singlet molecular oxygen: Early history of spectroscopic and photochemical studies with contributions of А.N. Terenin and Terenin’s school

Аlexander А. Krasnovsky Jr.
Journal of Photochemistry and Photobiology A: Chemistry 354 11 (2018)
https://doi.org/10.1016/j.jphotochem.2017.07.013

Nonadiabatic coupling reduces the activation energy in thermally activated delayed fluorescence

J. Gibson and T. J. Penfold
Physical Chemistry Chemical Physics 19 (12) 8428 (2017)
https://doi.org/10.1039/C7CP00719A

Intensity relationships in thea andb bands in the absorption and fluorescence spectra of some uranyl salts at various temperatures

D. D. Pant
Proceedings of the Indian Academy of Sciences - Section A 31 (2) 103 (1950)
https://doi.org/10.1007/BF03047006

Kinetics of luminescent flashes in the bacterium, achromobacter fischeri, at different temperatures

Gordon M. Schoepfle
Journal of Cellular and Comparative Physiology 16 (3) 341 (1940)
https://doi.org/10.1002/jcp.1030160309