La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
James Basset
J. Phys. Radium, 10 5 (1939) 217-228
Citations de cet article :
51 articles
Graphite melting and the nature of liquid carbon
Michael Sheindlin, Pavel Vervikishko, Tatiana Bgasheva, Alexander Bulava, Alexander Frolov and Andrey Vasin Physical Review B 111 (21) (2025) https://doi.org/10.1103/PhysRevB.111.214105
The Growth of Submillimeter Spherules on a Graphite Surface Under Prolonged Heating
V. P. Polishchuk, I. S. Samoylov, R. Kh. Amirov and V. I. Kiselev High Temperature 60 (4) 513 (2022) https://doi.org/10.1134/S0018151X22030154
Graphite Melting at “Low” Temperature
V. P. Polishchuk, I. S. Samoilov, R. Kh. Amirov, A. V. Kirillin and V. I. Kiselev High Temperature 58 (2) 197 (2020) https://doi.org/10.1134/S0018151X20020157
Arc ignition at heating of graphite by fixed current
V P Polistchook, I S Samoylov, R Kh Amirov and V I Kiselev Journal of Physics: Conference Series 927 012042 (2017) https://doi.org/10.1088/1742-6596/927/1/012042
Carbon at High Temperatures
Alexander Savvatimskiy Springer Series in Materials Science, Carbon at High Temperatures 134 17 (2015) https://doi.org/10.1007/978-3-319-21350-7_3
Nuclear Graphite
R.E. NIGHTINGALE, H.H. YOSHIKAWA and H.H.W. LOSTY Nuclear Graphite 117 (2013) https://doi.org/10.1016/B978-1-4832-2854-9.50010-9
Landolt-Börnstein
A. Busch, G. G. Grau, W. Kast, et al. Landolt-Börnstein 1 (2013) https://doi.org/10.1007/978-3-662-43331-7_1
State-of-the-art models for the phase diagram of carbon and diamond nucleation
L.M. Ghiringhelli, C. Valeriani, J.H. Los, et al. Molecular Physics 106 (16-18) 2011 (2008) https://doi.org/10.1080/00268970802077884
Graphenes Bonding Forces in Graphite
F. Rozpłoch, J. Patyk and J. Stankowski Acta Physica Polonica A 112 (3) 557 (2007) https://doi.org/10.12693/APhysPolA.112.557
Methods of Increasing the Measurement Accuracy during the Experimental Determination of the Melting Point of Graphite
A. Yu. Basharin, M. V. Brykin, M. Yu. Marin, I. S. Pakhomov and S. F. Sitnikov High Temperature 42 (1) 60 (2004) https://doi.org/10.1023/B:HITE.0000020092.25360.33
Experimental investigation of the thermal properties of carbon at high temperatures and moderate pressures
Erik I. Asinovskii, Alexander V. Kirillin and Alexander V. Kostanovskii Uspekhi Fizicheskih Nauk 172 (8) 931 (2002) https://doi.org/10.3367/UFNr.0172.200208e.0931
Thermodynamic state of the laser-induced liquid phase and position of the triple point of carbon
Sergei I. Kudryashov, Aleksander A. Karabutov and Nikita B. Zorov Mendeleev Communications 8 (4) 151 (1998) https://doi.org/10.1070/MC1998v008n04ABEH000961
The pressure-temperature phase and transformation diagram for carbon; updated through 1994
F.P. Bundy, W.A. Bassett, M.S. Weathers, et al. Carbon 34 (2) 141 (1996) https://doi.org/10.1016/0008-6223(96)00170-4
Thermophysical properties of POCO AXF-5Q graphite up to melting
G. Pottlacher, R.S. Hixson, S. Melnitzky, et al. Thermochimica Acta 218 183 (1993) https://doi.org/10.1016/0040-6031(93)80421-6
High-pressure liquid-liquid phase change in carbon
M. van Thiel and F. H. Ree Physical Review B 48 (6) 3591 (1993) https://doi.org/10.1103/PhysRevB.48.3591
Graphite melting under laser pulse heating
C. Ronchi, R. Beukers, H. Heinz, J. P. Hiernaut and R. Selfslag International Journal of Thermophysics 13 (1) 107 (1992) https://doi.org/10.1007/BF00503360
Preparation of Graphite Single-Crystal from an Iron Solution by a Temperature-Gradient Method
Yoshihiro Sumiyoshi, Masumi Ushio and Sadao Suzuki Bulletin of the Chemical Society of Japan 63 (8) 2318 (1990) https://doi.org/10.1246/bcsj.63.2318
Superhard Materials, Convection, and Optical Devices
R. B. Heimann and J. Kleiman Crystals, Superhard Materials, Convection, and Optical Devices 11 1 (1988) https://doi.org/10.1007/978-3-642-73205-8_1
Formation of Graphite Single Crystal from Iron Solution by the Slow Cooling Method
Yoshihiro Sumiyoshi, Masumi Ushio and Sadao Suzuki Bulletin of the Chemical Society of Japan 61 (5) 1577 (1988) https://doi.org/10.1246/bcsj.61.1577
An evaluation of the thermodynamic properties and the P, T phase diagram of carbon
Per Gustafson Carbon 24 (2) 169 (1986) https://doi.org/10.1016/0008-6223(86)90113-2
Measurement of Thermodynamic Parameters of Graphite by Pulsed-Laser Melting and Ion Channeling
T. Venkatesan, D. C. Jacobson, J. M. Gibson, et al. Physical Review Letters 53 (4) 360 (1984) https://doi.org/10.1103/PhysRevLett.53.360
The P, T phase and reaction diagram for elemental carbon, 1979
Francis P. Bundy Journal of Geophysical Research: Solid Earth 85 (B12) 6930 (1980) https://doi.org/10.1029/JB085iB12p06930
System employing laser heating for the measurement of high-temperature properties of materials over a wide pressure range
A. Greenville Whittaker, P. L. Kintner, L. S. Nelson and N. Richardson Review of Scientific Instruments 48 (6) 632 (1977) https://doi.org/10.1063/1.1135096
Graphite-liquid-vapor triple point pressure and the density of liquid carbon
David M. Haaland Carbon 14 (6) 357 (1976) https://doi.org/10.1016/0008-6223(76)90010-5
Thermodynamic properties of carbon up to the critical point
H.R Leider, O.H Krikorian and D.A Young Carbon 11 (5) 555 (1973) https://doi.org/10.1016/0008-6223(73)90316-3
Formation of flaky graphite single crystals by chemical transport
M. Inagaki, K. Toaka and T. Noda Carbon 9 (1) 94 (1971) https://doi.org/10.1016/0008-6223(71)90150-3
Thermal Design Principles of Spacecraft and Entry Bodies
T.A.. Dolton, H.E.. Goldstein and R.E.. Maurer Thermal Design Principles of Spacecraft and Entry Bodies 169 (1969) https://doi.org/10.1016/B978-0-12-395735-1.50016-4
Growth of single crystals of graphite from a carbon-iron melt
Tokiti Noda, Yoshihro Sumiyoshi and Noriaki Ito Carbon 6 (6) 813 (1968) https://doi.org/10.1016/0008-6223(68)90067-5
Graphite Triple Point and Solidus-Liquidus Interface Experimentally Determined up to 1000 atm
Glen J. Schoessow Physical Review Letters 21 (11) 738 (1968) https://doi.org/10.1103/PhysRevLett.21.738
Graphitization of carbon under high pressure
T. Noda Carbon 6 (2) 125 (1968) https://doi.org/10.1016/0008-6223(68)90297-2
T. DOLTON, H. GOLDSTEIN and R. MAURER (1968) https://doi.org/10.2514/6.1968-754
Carbon Arc in a Controlled Atmosphere as a Radiation Standard*
Robert R. Jayroe and R. G. Fowler Journal of the Optical Society of America 57 (4) 513 (1967) https://doi.org/10.1364/JOSA.57.000513
The effect of electric spark discharge on graphitization of carbon
H Honda, Y Sanada, K Kobayashi and T Furuta Carbon 3 (4) 429 (1966) https://doi.org/10.1016/0008-6223(66)90028-5
DIAMOND SYNTHESIS AND THE BEHAVIOR OF CARBON AT VERY HIGH PRESSURES AND TEMPERATURES
F. P. Bundy Annals of the New York Academy of Sciences 105 (17) 953 (1964) https://doi.org/10.1111/j.1749-6632.1964.tb42973.x
Melting of Graphite at Very High Pressure
F. P. Bundy The Journal of Chemical Physics 38 (3) 618 (1963) https://doi.org/10.1063/1.1733715
Direct Conversion of Graphite to Diamond in Static Pressure Apparatus
F. P. Bundy The Journal of Chemical Physics 38 (3) 631 (1963) https://doi.org/10.1063/1.1733716
Melting Point of Graphite at High Pressure: Heat of Fusion
F. P. Bundy Science 137 (3535) 1055 (1962) https://doi.org/10.1126/science.137.3535.1055
Diamond-Graphite Equilibrium Line from Growth and Graphitization of Diamond
F. P. Bundy, H. P. Bovenkerk, H. M. Strong and R. H. Wentorf The Journal of Chemical Physics 35 (2) 383 (1961) https://doi.org/10.1063/1.1731938
Growth, Structure, and Properties of Graphite Whiskers
Roger Bacon Journal of Applied Physics 31 (2) 283 (1960) https://doi.org/10.1063/1.1735559
Elektrothermie
A. Ragoss Elektrothermie 169 (1960) https://doi.org/10.1007/978-3-642-92778-2_7
Mass Spectrometric Study of Carbon Vapor
J. Drowart, R. P. Burns, G. DeMaria and Mark G. Inghram The Journal of Chemical Physics 31 (4) 1131 (1959) https://doi.org/10.1063/1.1730519
Solubility of Carbon in Silicon and Germanium
R. I. Scace and G. A. Slack The Journal of Chemical Physics 30 (6) 1551 (1959) https://doi.org/10.1063/1.1730236
Über die Synthese des Diamanten
A. Neuhaus Angewandte Chemie 66 (17-18) 525 (1954) https://doi.org/10.1002/ange.19540661707
La tension de vapeur et la chaleur de sublimation du carbone IV
P. Goldfinger and F. Waelbroeck Bulletin des Sociétés Chimiques Belges 62 (9-10) 545 (1953) https://doi.org/10.1002/bscb.19530620904
The Vapor Pressure and Heat of Sublimation of Graphite
L. H. Long The Journal of Chemical Physics 16 (11) 1087 (1948) https://doi.org/10.1063/1.1746731
�ber das Schmelzen des Kohlenstoffs
Hans K�nig Die Naturwissenschaften 34 (4) 108 (1947) https://doi.org/10.1007/BF00602631
Recent Work in the Field of High Pressures
P. W. Bridgman Reviews of Modern Physics 18 (1) 1 (1946) https://doi.org/10.1103/RevModPhys.18.1
Heat of Sublimation of Carbon
L. H. LONG and R. G. W. NORRISH Nature 158 (4007) 237 (1946) https://doi.org/10.1038/158237b0
The Two Heats of Atomization of Carbon
L. H. LONG and R. G. W. NORRISH Nature 157 (3989) 486 (1946) https://doi.org/10.1038/157486b0
On the Heat of Sublimation of Carbon
G. Herzberg The Journal of Chemical Physics 10 (5) 306 (1942) https://doi.org/10.1063/1.1723728
The Carbon Arc as a Standard of Light
J. T. MacGregor-Morris Transactions of the Illuminating Engineering Society 5 (1-9_IEStrans) 123 (1940) https://doi.org/10.1177/147715354000500110