Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Magnetic and Structural Properties of Nanocrystalline Cobalt-Substituted Magnesium–Manganese Ferrite

Zein K. Heiba, Mohamed Bakr Mohamed, Adel Maher Wahba and L. Arda
Journal of Superconductivity and Novel Magnetism 28 (8) 2517 (2015)
https://doi.org/10.1007/s10948-015-3069-7

Polyol synthesis of Mn3+ substituted Fe3O4 nanoparticles: Cation distribution, structural and electrical properties

Md. Amir, B. Ünal, Sagar E. Shirsath, et al.
Superlattices and Microstructures 85 747 (2015)
https://doi.org/10.1016/j.spmi.2015.07.001

Structural and magnetic characterization and cation distribution of nanocrystalline Co x Fe 3−x O 4 ferrites

Adel Maher Wahba and Mohamed Bakr Mohamed
Journal of Magnetism and Magnetic Materials 378 246 (2015)
https://doi.org/10.1016/j.jmmm.2014.10.164

Self-propagating high temperature synthesis, structural morphology and magnetic interactions in rare earth Ho3+ doped CoFe2O4 nanoparticles

K.S. Lohar, A.M. Pachpinde, M.M. Langade, R.H. Kadam and Sagar E. Shirsath
Journal of Alloys and Compounds 604 204 (2014)
https://doi.org/10.1016/j.jallcom.2014.03.141

Impact of larger rare earth Pr3+ ions on the physical properties of chemically derived PrxCoFe2−xO4 nanoparticles

A.M. Pachpinde, M.M. Langade, K.S. Lohar, S.M. Patange and Sagar E. Shirsath
Chemical Physics 429 20 (2014)
https://doi.org/10.1016/j.chemphys.2013.11.018

Combustion synthesis of Co2+ substituted Li0.5Cr0.5Fe2O4 nano-powder: Physical and magnetic interactions

M.V. Chaudhari, R.H. Kadam, S.B. Shelke, et al.
Powder Technology 259 14 (2014)
https://doi.org/10.1016/j.powtec.2014.03.053

Crystallite-growth, phase transition, magnetic properties, and sintering behaviour of nano-CuFe2O4 powders prepared by a combustion-like process

Roberto Köferstein, Till Walther, Dietrich Hesse and Stefan G. Ebbinghaus
Journal of Solid State Chemistry 213 57 (2014)
https://doi.org/10.1016/j.jssc.2014.02.010

Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho3+–Mn2+–Fe3+–O2−ferromagnetic nanoparticles

Sagar E. Shirsath, Mahesh L. Mane, Yukiko Yasukawa, Xiaoxi Liu and Akimitsu Morisako
Phys. Chem. Chem. Phys. 16 (6) 2347 (2014)
https://doi.org/10.1039/C3CP54257B

Self-ignited synthesis of Mg–Gd–Mn nanoferrites and impact of cation distribution on the dielectric properties

Gagan Kumar, Jyoti Shah, R.K. Kotnala, et al.
Ceramics International 40 (9) 14509 (2014)
https://doi.org/10.1016/j.ceramint.2014.07.017

Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho3+–Mn2+–Fe3+–O2−ferromagnetic nanoparticles

Sagar E. Shirsath, Mahesh L. Mane, Yukiko Yasukawa, Xiaoxi Liu and Akimitsu Morisako
Phys. Chem. Chem. Phys. 16 (6) 2347 (2014)
https://doi.org/10.1039/c3cp54257b

Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite

Mohamed Bakr Mohamed and M. Yehia
Journal of Alloys and Compounds 615 181 (2014)
https://doi.org/10.1016/j.jallcom.2014.06.156

Structural and magnetic properties of CoFe 2−x Mo x O 4 nanocrystalline ferrites

Mohamed Bakr Mohamed, Adel Maher Wahba and M. Yehia
Materials Science and Engineering: B 190 52 (2014)
https://doi.org/10.1016/j.mseb.2014.09.010

Sintering temperature reflected cation distribution of Zn2+ substituted CoFe2O4

Sanjay R. Kamble, Sagar E. Shirsath, S. M. Patange and K. M. Jadhav
Journal of Central South University 20 (6) 1469 (2013)
https://doi.org/10.1007/s11771-013-1636-2

Less magnetic and larger Zr4+–Zn2+ ions co-substituted structural and magnetic properties of ordered Li0.5Fe2.5O4 nanoparticles

S.K. Gurav, Sagar E. Shirsath, R.H. Kadam, et al.
Materials Research Bulletin 48 (9) 3530 (2013)
https://doi.org/10.1016/j.materresbull.2013.05.047

Low-temperature synthesis of MnxMg1−xFe2O4(x= 0–1) nanoparticles: cation distribution, structural and magnetic properties

V M Khot, A B Salunkhe, M R Phadatare, N D Thorat and S H Pawar
Journal of Physics D: Applied Physics 46 (5) 055303 (2013)
https://doi.org/10.1088/0022-3727/46/5/055303

Fabrication of Cu2+ substituted nanocrystalline Ni–Zn ferrite by solution combustion route: Investigations on structure, cation occupancy and magnetic behavior

V.V. Awati, S.M. Rathod, Sagar E. Shirsath and Maheshkumar L. Mane
Journal of Alloys and Compounds 553 157 (2013)
https://doi.org/10.1016/j.jallcom.2012.11.045

Cation distribution investigation and characterizations of Ni1−xCdxFe2O4 nanoparticles synthesized by citrate gel process

K.S. Lohar, S.M. Patange, M.L. Mane and Sagar E. Shirsath
Journal of Molecular Structure 1032 105 (2013)
https://doi.org/10.1016/j.molstruc.2012.07.055

Fabrication of Co0.5Ni0.5CrxFe2−xO4 materials via sol–gel method and their characterizations

R.H. Kadam, A.P. Birajdar, Suresh T. Alone and Sagar E. Shirsath
Journal of Magnetism and Magnetic Materials 327 167 (2013)
https://doi.org/10.1016/j.jmmm.2012.09.059

Investigation of structural, dielectric, magnetic and antibacterial activity of Cu–Cd–Ni–FeO4 nanoparticles

Mohd. Hashim, Alimuddin, Sagar E. Shirsath, et al.
Journal of Magnetism and Magnetic Materials 341 148 (2013)
https://doi.org/10.1016/j.jmmm.2013.04.024

Low temperature synthesis of Li0.5ZrxCoxFe2.5−2xO4 powder and their characterizations

S.K. Gurav, Sagar E. Shirsath, R.H. Kadam and D.R. Mane
Powder Technology 235 485 (2013)
https://doi.org/10.1016/j.powtec.2012.11.009

Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite

Mohd Hashim, Alimuddin, Sagar E. Shirsath, et al.
Journal of Alloys and Compounds 549 348 (2013)
https://doi.org/10.1016/j.jallcom.2012.08.039

Synthesis and magnetic properties of Cu0.7Zn0.3AlxFe2−xO4 nanoferrites using egg-white method

R.A. Pawar, Sagar E. Shirsath, R.H. Kadam, R.P. Joshi and S.M. Patange
Journal of Magnetism and Magnetic Materials 339 138 (2013)
https://doi.org/10.1016/j.jmmm.2013.03.006

Crystallographic, magnetic and electrical properties of Ni0.5Cu0.25Zn0.25LaxFe2−xO4 nanoparticles fabricated by sol–gel method

Vivek Chaudhari, Sagar E. Shirsath, M.L. Mane, et al.
Journal of Alloys and Compounds 549 213 (2013)
https://doi.org/10.1016/j.jallcom.2012.09.060

Site occupancies of Co–Mg–Cr–Fe ions and their impact on the properties of Co0.5Mg0.5CrxFe2−xO4

M.V. Chaudhari, Sagar E. Shirsath, A.B. Kadam, et al.
Journal of Alloys and Compounds 552 443 (2013)
https://doi.org/10.1016/j.jallcom.2012.11.070

Role of Cr3+ ions on the microstructure development, and magnetic phase evolution of Ni0.7Zn0.3Fe2O4 ferrite nanoparticles

A.A. Birajdar, Sagar E. Shirsath, R.H. Kadam, et al.
Journal of Alloys and Compounds 512 (1) 316 (2012)
https://doi.org/10.1016/j.jallcom.2011.09.087

Structural properties and magnetic interactions in Ni0.5Mg0.5Fe2−xCrxO4 (0 ≤ x ≤ 1) ferrite nanoparticles

Mohd. Hashim, Alimuddin, Shalendra Kumar, et al.
Powder Technology 229 37 (2012)
https://doi.org/10.1016/j.powtec.2012.05.054

Rietveld Structure Refinement and Cation Distribution of Substituted Nanocrystalline Ni-Zn Ferrites

A. A. Birajdar, Sagar E. Shirsath, R. H. Kadam, et al.
ISRN Ceramics 2012 1 (2012)
https://doi.org/10.5402/2012/876123

Substitutional effect of Cr3+ ions on the properties of Mg–Zn ferrite nanoparticles

S.J. Haralkar, R.H. Kadam, S.S More, et al.
Physica B: Condensed Matter 407 (21) 4338 (2012)
https://doi.org/10.1016/j.physb.2012.07.030

Effect of Al doping on the cation distribution in copper ferrite nanoparticles and their structural and magnetic properties

A. T. Raghavender, Sagar E. Shirsath, D. Pajic, et al.
Journal of the Korean Physical Society 61 (4) 568 (2012)
https://doi.org/10.3938/jkps.61.568

Sol–gel synthesis of Cr3+ substituted Li0.5Fe2.5O4: Cation distribution, structural and magnetic properties

D.R. Mane, Swati Patil, D.D. Birajdar, et al.
Materials Chemistry and Physics 126 (3) 755 (2011)
https://doi.org/10.1016/j.matchemphys.2010.12.048

Autocombustion High-Temperature Synthesis, Structural, and Magnetic Properties of CoCrxFe2–xO4 (0 ≤ x ≤ 1.0)

B. G. Toksha, Sagar E. Shirsath, M. L. Mane, et al.
The Journal of Physical Chemistry C 115 (43) 20905 (2011)
https://doi.org/10.1021/jp205572m

Effects of Nd:YAG laser irradiation on structural and magnetic properties of Li0.5Fe2.5O4

Maheshkumar L. Mane, R. Sundar, K. Ranganathan, S.M. Oak and K.M. Jadhav
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 269 (4) 466 (2011)
https://doi.org/10.1016/j.nimb.2010.12.039

Redistribution of cations and enhancement in magnetic properties of sol–gel synthesized Cu0.7−x Co x Zn0.3Fe2O4 (0 ≤ x ≤ 0.5)

D. R. Mane, D. D. Birajdar, Swati Patil, Sagar E. Shirsath and R. H. Kadam
Journal of Sol-Gel Science and Technology 58 (1) 70 (2011)
https://doi.org/10.1007/s10971-010-2357-8

Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles

S. M. Patange, Sagar E. Shirsath, G. S. Jangam, et al.
Journal of Applied Physics 109 (5) (2011)
https://doi.org/10.1063/1.3559266

Structural and magnetic characterizations of MnNiZn ferrite nanoparticles

Dhanraj R. Mane, Damodar D. Birajdar, Sagar E. Shirsath, Raghavender A. Telugu and Ram. H. Kadam
physica status solidi (a) 207 (10) 2355 (2010)
https://doi.org/10.1002/pssa.201026079

Cation distribution by Rietveld, spectral and magnetic studies of chromium-substituted nickel ferrites

S. M. Patange, Sagar E. Shirsath, B. G. Toksha, et al.
Applied Physics A 95 (2) 429 (2009)
https://doi.org/10.1007/s00339-008-4897-0

Preparation and Characterization of Manganese Ferrite Aluminates

R. L. Dhiman, S. P. Taneja and V. R. Reddy
Advances in Condensed Matter Physics 2008 1 (2008)
https://doi.org/10.1155/2008/703479

Magnetic and dielectric properties of Mg1+x Mnx, Fe2?2x, O4 ferrite system

A. A. Pandit, A. R. Shitre, D. R. Shengule and K. M. Jadhav
Journal of Materials Science 40 (2) 423 (2005)
https://doi.org/10.1007/s10853-005-6099-x

Synthesis and Characterization of Spinel‐Type Gallia‐Alumina Solid Solutions

C. Otero Areán, M. Rodríguez Delgado, V. Montouillout and D. Massiot
Zeitschrift für anorganische und allgemeine Chemie 631 (11) 2121 (2005)
https://doi.org/10.1002/zaac.200570027

Phase analysis study of copper ferrite aluminates by X-ray diffraction and Mössbauer spectroscopy

M Almokhtar, Atef M Abdalla and M.A Gaffar
Journal of Magnetism and Magnetic Materials 272-276 2216 (2004)
https://doi.org/10.1016/j.jmmm.2003.12.921

Ternary Compounds, Organic Semiconductors

Landolt-Börnstein - Group III Condensed Matter, Ternary Compounds, Organic Semiconductors 41E 1 (2000)
https://doi.org/10.1007/10717201_235

Cation Migration and Coercivity in Mixed Copper–Cobalt Spinel Ferrite Powders

Ph. Tailhades, C. Villette, A. Rousset, et al.
Journal of Solid State Chemistry 141 (1) 56 (1998)
https://doi.org/10.1006/jssc.1998.7914

CuFe2O4 thin films: elaboration process, microstructural and magneto-optical properties

Corine Despax, Philippe Tailhades, Carole Baubet, Carole Villette and Abel Rousset
Thin Solid Films 293 (1-2) 22 (1997)
https://doi.org/10.1016/S0040-6090(96)08877-3

Lithium intercalation into copper ferrite and copper chromite: Redox extraction of copper

Laure Monconduit, Nabil Allali, Annie Leblanc and Michel Danot
Materials Research Bulletin 27 (7) 839 (1992)
https://doi.org/10.1016/0025-5408(92)90179-4

Preparation of Catalysts V - Scientific Bases for the Preparation of Heterogeneous Catalysts, Proceedings of the Fifth International Symposium

Michele Piemontese, Ferruccio Trifiro', Angelo Vaccari, Elisabetta Foresti and Massimo Gazzano
Studies in Surface Science and Catalysis, Preparation of Catalysts V - Scientific Bases for the Preparation of Heterogeneous Catalysts, Proceedings of the Fifth International Symposium 63 49 (1991)
https://doi.org/10.1016/S0167-2991(08)64571-1

Transport, magnetic and spectroscopic studies of nickel-gallium ferrites

A. Ahmed and V. S. Darshane
Journal of Materials Science 26 (17) 4581 (1991)
https://doi.org/10.1007/BF00612392

Structural, transport and infrared studies of oxidic spinels Zn1?xNixFeCrO4

S. Al Dallal, M. N. Khan and Ashfaq Ahmed
Journal of Materials Science 25 (1) 407 (1990)
https://doi.org/10.1007/BF00714047

Structural, transport, magnetic and infrared studies of the oxidic spinels Co2-xTi1-xFe2xO4

P Nathwani and V S Darshane
Journal of Physics C: Solid State Physics 21 (17) 3191 (1988)
https://doi.org/10.1088/0022-3719/21/17/010

X-ray, electrical conductivity, magnetic and infrared studies of the system Co2−x Ge1−x Fe2x O4

Prabha Nathwani and V S Darshane
Pramana 28 (6) 675 (1987)
https://doi.org/10.1007/BF02892870

Contribution de la spectrometrie mössbauer et de la spectrometrie d'absorption X A l'etude de la non-stoechiometrie de CuFe2O4

B. Hannoyer, M. Lenglet, R. Chopova and J.C. Tellier
Materials Chemistry and Physics 13 (5) 449 (1985)
https://doi.org/10.1016/0254-0584(85)90017-3

Cation distribution of the system Zn1−xCoxFeMnO4 by x-ray, electrical conductivity and Mössbauer studies

P S Jain and V S Darshane
Pramana 20 (1) 7 (1983)
https://doi.org/10.1007/BF02846175

Distribution of Cobalt Ions among Octahedral and Tetrahedral Sites in CoxZn1—xAl2O4Spinel Solid Solutions

P. Porta and A. Anichini
Zeitschrift für Physikalische Chemie 127 (2) 223 (1981)
https://doi.org/10.1524/zpch.1981.127.2.223

Jahn-Teller-type crystal distortions in copper ferrite

R. G. Kulkarni and Vishwas U. Patil
Journal of Materials Science 15 (9) 2221 (1980)
https://doi.org/10.1007/BF00552309

Key Elements: d4–d8-Elements

W. Pies and A. Weiss
Landolt-Börnstein - Group III Condensed Matter, Key Elements: d4–d8-Elements 7f 563 (1977)
https://doi.org/10.1007/10201577_58

Key Elements: d4–d8-Elements

W. Pies and A. Weiss
Landolt-Börnstein - Group III Condensed Matter, Key Elements: d4–d8-Elements 7f 539 (1977)
https://doi.org/10.1007/10201577_57

The distribution of nickel ions among octahedral and tetrahedral sites in NiAl2O4MgAl2O4 solid solutions

P. Porta, F.S. Stone and R.G. Turner
Journal of Solid State Chemistry 11 (2) 135 (1974)
https://doi.org/10.1016/0022-4596(74)90108-X

Oxygen Content and Thermomagnetic Properties in Cu1-ξMgξFe2O4

Kohji Ohbayashi and Shuichi Iida
Journal of the Physical Society of Japan 23 (4) 776 (1967)
https://doi.org/10.1143/JPSJ.23.776

Effect of Chemical Stoichiometry on the Copper Ferrite Phase Transition

H. M. O'Bryan, H. J. Levinstein and R. C. Sherwood
Journal of Applied Physics 37 (3) 1438 (1966)
https://doi.org/10.1063/1.1708503

Effect of Oxygen Defficiency on the Magnetic Properties of Copper Ferrite

Kohji Ohbayashi, Kay Kohn and Shuichi Iida
Journal of the Physical Society of Japan 21 (12) 2740 (1966)
https://doi.org/10.1143/JPSJ.21.2740

Magnetic Properties of the Dual Oxide System CuO–Fe2O3

W. O. Milligan, Y. Tamai and J. T. Richardson
Journal of Applied Physics 34 (7) 2093 (1963)
https://doi.org/10.1063/1.1729743

Influence of manganese and oxygen content on tetragonal deformation of copper ferrite

A. Bergstein and L. červinka
Czechoslovak Journal of Physics 11 (8) 584 (1961)
https://doi.org/10.1007/BF01689155

Some Crystallographic and Magnetic Properties of Square-Loop Materials in Ferrite Systems Containing Copper

Aaron P. Greifer and William J. Croft
Journal of Applied Physics 30 (4) S34 (1959)
https://doi.org/10.1063/1.2185957

Effects of Annealing on the Saturation Induction of Ferrites Containing Nickel and/or Copper

L. G. Van Uitert
Journal of Applied Physics 28 (4) 478 (1957)
https://doi.org/10.1063/1.1722775