La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
L. Weil , F. Bertaut , L. Bochirol
J. Phys. Radium, 11 5 (1950) 208-212
Citations de cet article :
199 articles | Pages :
Magnetic and Structural Properties of Nanocrystalline Cobalt-Substituted Magnesium–Manganese Ferrite
Zein K. Heiba, Mohamed Bakr Mohamed, Adel Maher Wahba and L. Arda Journal of Superconductivity and Novel Magnetism 28 (8) 2517 (2015) https://doi.org/10.1007/s10948-015-3069-7
Polyol synthesis of Mn3+ substituted Fe3O4 nanoparticles: Cation distribution, structural and electrical properties
Md. Amir, B. Ünal, Sagar E. Shirsath, et al. Superlattices and Microstructures 85 747 (2015) https://doi.org/10.1016/j.spmi.2015.07.001
Structural and magnetic characterization and cation distribution of nanocrystalline Co x Fe 3−x O 4 ferrites
Adel Maher Wahba and Mohamed Bakr Mohamed Journal of Magnetism and Magnetic Materials 378 246 (2015) https://doi.org/10.1016/j.jmmm.2014.10.164
Self-propagating high temperature synthesis, structural morphology and magnetic interactions in rare earth Ho3+ doped CoFe2O4 nanoparticles
K.S. Lohar, A.M. Pachpinde, M.M. Langade, R.H. Kadam and Sagar E. Shirsath Journal of Alloys and Compounds 604 204 (2014) https://doi.org/10.1016/j.jallcom.2014.03.141
Impact of larger rare earth Pr3+ ions on the physical properties of chemically derived PrxCoFe2−xO4 nanoparticles
A.M. Pachpinde, M.M. Langade, K.S. Lohar, S.M. Patange and Sagar E. Shirsath Chemical Physics 429 20 (2014) https://doi.org/10.1016/j.chemphys.2013.11.018
Combustion synthesis of Co2+ substituted Li0.5Cr0.5Fe2O4 nano-powder: Physical and magnetic interactions
M.V. Chaudhari, R.H. Kadam, S.B. Shelke, et al. Powder Technology 259 14 (2014) https://doi.org/10.1016/j.powtec.2014.03.053
Crystallite-growth, phase transition, magnetic properties, and sintering behaviour of nano-CuFe2O4 powders prepared by a combustion-like process
Roberto Köferstein, Till Walther, Dietrich Hesse and Stefan G. Ebbinghaus Journal of Solid State Chemistry 213 57 (2014) https://doi.org/10.1016/j.jssc.2014.02.010
Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho3+–Mn2+–Fe3+–O2−ferromagnetic nanoparticles
Sagar E. Shirsath, Mahesh L. Mane, Yukiko Yasukawa, Xiaoxi Liu and Akimitsu Morisako Phys. Chem. Chem. Phys. 16 (6) 2347 (2014) https://doi.org/10.1039/C3CP54257B
Self-ignited synthesis of Mg–Gd–Mn nanoferrites and impact of cation distribution on the dielectric properties
Gagan Kumar, Jyoti Shah, R.K. Kotnala, et al. Ceramics International 40 (9) 14509 (2014) https://doi.org/10.1016/j.ceramint.2014.07.017
Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho3+–Mn2+–Fe3+–O2−ferromagnetic nanoparticles
Sagar E. Shirsath, Mahesh L. Mane, Yukiko Yasukawa, Xiaoxi Liu and Akimitsu Morisako Phys. Chem. Chem. Phys. 16 (6) 2347 (2014) https://doi.org/10.1039/c3cp54257b
Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite
Mohamed Bakr Mohamed and M. Yehia Journal of Alloys and Compounds 615 181 (2014) https://doi.org/10.1016/j.jallcom.2014.06.156
Structural and magnetic properties of CoFe 2−x Mo x O 4 nanocrystalline ferrites
Mohamed Bakr Mohamed, Adel Maher Wahba and M. Yehia Materials Science and Engineering: B 190 52 (2014) https://doi.org/10.1016/j.mseb.2014.09.010
Preparation and characterization of Co2+ substituted Li–Dy ferrite ceramics
U.B. Shinde, Sagar E. Shirsath, S.M. Patange, et al. Ceramics International 39 (5) 5227 (2013) https://doi.org/10.1016/j.ceramint.2012.12.022
Sintering temperature reflected cation distribution of Zn2+ substituted CoFe2O4
Sanjay R. Kamble, Sagar E. Shirsath, S. M. Patange and K. M. Jadhav Journal of Central South University 20 (6) 1469 (2013) https://doi.org/10.1007/s11771-013-1636-2
Less magnetic and larger Zr4+–Zn2+ ions co-substituted structural and magnetic properties of ordered Li0.5Fe2.5O4 nanoparticles
S.K. Gurav, Sagar E. Shirsath, R.H. Kadam, et al. Materials Research Bulletin 48 (9) 3530 (2013) https://doi.org/10.1016/j.materresbull.2013.05.047
Low-temperature synthesis of MnxMg1−xFe2O4(x= 0–1) nanoparticles: cation distribution, structural and magnetic properties
V M Khot, A B Salunkhe, M R Phadatare, N D Thorat and S H Pawar Journal of Physics D: Applied Physics 46 (5) 055303 (2013) https://doi.org/10.1088/0022-3727/46/5/055303
Fabrication of Cu2+ substituted nanocrystalline Ni–Zn ferrite by solution combustion route: Investigations on structure, cation occupancy and magnetic behavior
V.V. Awati, S.M. Rathod, Sagar E. Shirsath and Maheshkumar L. Mane Journal of Alloys and Compounds 553 157 (2013) https://doi.org/10.1016/j.jallcom.2012.11.045
Study of structural and magnetic properties of (Co–Cu)Fe2O4/PANI composites
Mohd. Hashim, Alimuddin, Sagar E. Shirsath, et al. Materials Chemistry and Physics 141 (1) 406 (2013) https://doi.org/10.1016/j.matchemphys.2013.05.034
Cation distribution investigation and characterizations of Ni1−xCdxFe2O4 nanoparticles synthesized by citrate gel process
K.S. Lohar, S.M. Patange, M.L. Mane and Sagar E. Shirsath Journal of Molecular Structure 1032 105 (2013) https://doi.org/10.1016/j.molstruc.2012.07.055
Fabrication of Co0.5Ni0.5CrxFe2−xO4 materials via sol–gel method and their characterizations
R.H. Kadam, A.P. Birajdar, Suresh T. Alone and Sagar E. Shirsath Journal of Magnetism and Magnetic Materials 327 167 (2013) https://doi.org/10.1016/j.jmmm.2012.09.059
Investigation of structural, dielectric, magnetic and antibacterial activity of Cu–Cd–Ni–FeO4 nanoparticles
Mohd. Hashim, Alimuddin, Sagar E. Shirsath, et al. Journal of Magnetism and Magnetic Materials 341 148 (2013) https://doi.org/10.1016/j.jmmm.2013.04.024
Low temperature synthesis of Li0.5ZrxCoxFe2.5−2xO4 powder and their characterizations
S.K. Gurav, Sagar E. Shirsath, R.H. Kadam and D.R. Mane Powder Technology 235 485 (2013) https://doi.org/10.1016/j.powtec.2012.11.009
Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite
Mohd Hashim, Alimuddin, Sagar E. Shirsath, et al. Journal of Alloys and Compounds 549 348 (2013) https://doi.org/10.1016/j.jallcom.2012.08.039
Synthesis and magnetic properties of Cu0.7Zn0.3AlxFe2−xO4 nanoferrites using egg-white method
R.A. Pawar, Sagar E. Shirsath, R.H. Kadam, R.P. Joshi and S.M. Patange Journal of Magnetism and Magnetic Materials 339 138 (2013) https://doi.org/10.1016/j.jmmm.2013.03.006
Crystallographic, magnetic and electrical properties of Ni0.5Cu0.25Zn0.25LaxFe2−xO4 nanoparticles fabricated by sol–gel method
Vivek Chaudhari, Sagar E. Shirsath, M.L. Mane, et al. Journal of Alloys and Compounds 549 213 (2013) https://doi.org/10.1016/j.jallcom.2012.09.060
Site occupancies of Co–Mg–Cr–Fe ions and their impact on the properties of Co0.5Mg0.5CrxFe2−xO4
M.V. Chaudhari, Sagar E. Shirsath, A.B. Kadam, et al. Journal of Alloys and Compounds 552 443 (2013) https://doi.org/10.1016/j.jallcom.2012.11.070
Role of Cr3+ ions on the microstructure development, and magnetic phase evolution of Ni0.7Zn0.3Fe2O4 ferrite nanoparticles
A.A. Birajdar, Sagar E. Shirsath, R.H. Kadam, et al. Journal of Alloys and Compounds 512 (1) 316 (2012) https://doi.org/10.1016/j.jallcom.2011.09.087
Structural properties and magnetic interactions in Ni0.5Mg0.5Fe2−xCrxO4 (0 ≤ x ≤ 1) ferrite nanoparticles
Mohd. Hashim, Alimuddin, Shalendra Kumar, et al. Powder Technology 229 37 (2012) https://doi.org/10.1016/j.powtec.2012.05.054
Rietveld Structure Refinement and Cation Distribution of Substituted Nanocrystalline Ni-Zn Ferrites
A. A. Birajdar, Sagar E. Shirsath, R. H. Kadam, et al. ISRN Ceramics 2012 1 (2012) https://doi.org/10.5402/2012/876123
Substitutional effect of Cr3+ ions on the properties of Mg–Zn ferrite nanoparticles
S.J. Haralkar, R.H. Kadam, S.S More, et al. Physica B: Condensed Matter 407 (21) 4338 (2012) https://doi.org/10.1016/j.physb.2012.07.030
Effect of Al doping on the cation distribution in copper ferrite nanoparticles and their structural and magnetic properties
A. T. Raghavender, Sagar E. Shirsath, D. Pajic, et al. Journal of the Korean Physical Society 61 (4) 568 (2012) https://doi.org/10.3938/jkps.61.568
Sol–gel synthesis of Cr3+ substituted Li0.5Fe2.5O4: Cation distribution, structural and magnetic properties
D.R. Mane, Swati Patil, D.D. Birajdar, et al. Materials Chemistry and Physics 126 (3) 755 (2011) https://doi.org/10.1016/j.matchemphys.2010.12.048
Autocombustion High-Temperature Synthesis, Structural, and Magnetic Properties of CoCrxFe2–xO4 (0 ≤ x ≤ 1.0)
B. G. Toksha, Sagar E. Shirsath, M. L. Mane, et al. The Journal of Physical Chemistry C 115 (43) 20905 (2011) https://doi.org/10.1021/jp205572m
Effects of Nd:YAG laser irradiation on structural and magnetic properties of Li0.5Fe2.5O4
Maheshkumar L. Mane, R. Sundar, K. Ranganathan, S.M. Oak and K.M. Jadhav Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 269 (4) 466 (2011) https://doi.org/10.1016/j.nimb.2010.12.039
Redistribution of cations and enhancement in magnetic properties of sol–gel synthesized Cu0.7−x Co x Zn0.3Fe2O4 (0 ≤ x ≤ 0.5)
D. R. Mane, D. D. Birajdar, Swati Patil, Sagar E. Shirsath and R. H. Kadam Journal of Sol-Gel Science and Technology 58 (1) 70 (2011) https://doi.org/10.1007/s10971-010-2357-8
Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles
S. M. Patange, Sagar E. Shirsath, G. S. Jangam, et al. Journal of Applied Physics 109 (5) (2011) https://doi.org/10.1063/1.3559266
Structural and magnetic characterizations of MnNiZn ferrite nanoparticles
Dhanraj R. Mane, Damodar D. Birajdar, Sagar E. Shirsath, Raghavender A. Telugu and Ram. H. Kadam physica status solidi (a) 207 (10) 2355 (2010) https://doi.org/10.1002/pssa.201026079
Cation distribution in nanocrystalline Al3+ and Cr3+ co-substituted CoFe2O4
S.S. More, R.H. Kadam, A.B. Kadam, et al. Journal of Alloys and Compounds 502 (2) 477 (2010) https://doi.org/10.1016/j.jallcom.2010.04.201
Cation distribution by Rietveld, spectral and magnetic studies of chromium-substituted nickel ferrites
S. M. Patange, Sagar E. Shirsath, B. G. Toksha, et al. Applied Physics A 95 (2) 429 (2009) https://doi.org/10.1007/s00339-008-4897-0
Preparation and Characterization of Manganese Ferrite Aluminates
R. L. Dhiman, S. P. Taneja and V. R. Reddy Advances in Condensed Matter Physics 2008 1 (2008) https://doi.org/10.1155/2008/703479
Magnetic and dielectric properties of Mg1+x Mnx, Fe2?2x, O4 ferrite system
A. A. Pandit, A. R. Shitre, D. R. Shengule and K. M. Jadhav Journal of Materials Science 40 (2) 423 (2005) https://doi.org/10.1007/s10853-005-6099-x
Synthesis and Characterization of Spinel‐Type Gallia‐Alumina Solid Solutions
C. Otero Areán, M. Rodríguez Delgado, V. Montouillout and D. Massiot Zeitschrift für anorganische und allgemeine Chemie 631 (11) 2121 (2005) https://doi.org/10.1002/zaac.200570027
Phase analysis study of copper ferrite aluminates by X-ray diffraction and Mössbauer spectroscopy
M Almokhtar, Atef M Abdalla and M.A Gaffar Journal of Magnetism and Magnetic Materials 272-276 2216 (2004) https://doi.org/10.1016/j.jmmm.2003.12.921
Cation distribution in NixMn1−xFe2O4 ferrites
Qiang-min Wei, Jian-bao Li, Yong-jun Chen and Yong-sheng Han Materials Chemistry and Physics 74 (3) 340 (2002) https://doi.org/10.1016/S0254-0584(01)00487-4
Ternary Compounds, Organic Semiconductors
Landolt-Börnstein - Group III Condensed Matter, Ternary Compounds, Organic Semiconductors 41E 1 (2000) https://doi.org/10.1007/10717201_235
Cation Migration and Coercivity in Mixed Copper–Cobalt Spinel Ferrite Powders
Ph. Tailhades, C. Villette, A. Rousset, et al. Journal of Solid State Chemistry 141 (1) 56 (1998) https://doi.org/10.1006/jssc.1998.7914
Magnetic Hysteresis in Novel Magnetic Materials
C. Villette, F. Agnoli, Ch. Bonino, Ph. Tailhades and A. Rousset Magnetic Hysteresis in Novel Magnetic Materials 389 (1997) https://doi.org/10.1007/978-94-011-5478-9_41
CuFe2O4 thin films: elaboration process, microstructural and magneto-optical properties
Corine Despax, Philippe Tailhades, Carole Baubet, Carole Villette and Abel Rousset Thin Solid Films 293 (1-2) 22 (1997) https://doi.org/10.1016/S0040-6090(96)08877-3
Magnetic properties of copper ferrite aluminates
R.G. Kulkarni, Bimal S. Trivedi, H.H. Joshi and G.J. Baldha Journal of Magnetism and Magnetic Materials 159 (3) 375 (1996) https://doi.org/10.1016/0304-8853(95)00943-4
Structural and IR studies on Cu-Ti mixed ferrite
A. Elfalaky Applied Physics A Solids and Surfaces 59 (4) 389 (1994) https://doi.org/10.1007/BF00331717
Lithium intercalation into copper ferrite and copper chromite: Redox extraction of copper
Laure Monconduit, Nabil Allali, Annie Leblanc and Michel Danot Materials Research Bulletin 27 (7) 839 (1992) https://doi.org/10.1016/0025-5408(92)90179-4
Preparation of Catalysts V - Scientific Bases for the Preparation of Heterogeneous Catalysts, Proceedings of the Fifth International Symposium
Michele Piemontese, Ferruccio Trifiro', Angelo Vaccari, Elisabetta Foresti and Massimo Gazzano Studies in Surface Science and Catalysis, Preparation of Catalysts V - Scientific Bases for the Preparation of Heterogeneous Catalysts, Proceedings of the Fifth International Symposium 63 49 (1991) https://doi.org/10.1016/S0167-2991(08)64571-1
Transport, magnetic and spectroscopic studies of nickel-gallium ferrites
A. Ahmed and V. S. Darshane Journal of Materials Science 26 (17) 4581 (1991) https://doi.org/10.1007/BF00612392
Structural, transport and infrared studies of oxidic spinels Zn1?xNixFeCrO4
S. Al Dallal, M. N. Khan and Ashfaq Ahmed Journal of Materials Science 25 (1) 407 (1990) https://doi.org/10.1007/BF00714047
57Fe NMR, magnetization and X-ray study of Cd0.1Cu0.9Fe2O4 ferrite
J. Hankiewicz, Z. Pajak and M. Krupotkin Journal of Magnetism and Magnetic Materials 89 (3) 315 (1990) https://doi.org/10.1016/0304-8853(90)90743-A
Structural, transport, magnetic and infrared studies of the oxidic spinels Co2-xTi1-xFe2xO4
P Nathwani and V S Darshane Journal of Physics C: Solid State Physics 21 (17) 3191 (1988) https://doi.org/10.1088/0022-3719/21/17/010
Mössbauer study ofCuCr0.1Fe1.9O4
Hang Nam Ok and Yun Kon Kim Physical Review B 36 (10) 5120 (1987) https://doi.org/10.1103/PhysRevB.36.5120
X-ray, electrical conductivity, magnetic and infrared studies of the system Co2−x Ge1−x Fe2x O4
Prabha Nathwani and V S Darshane Pramana 28 (6) 675 (1987) https://doi.org/10.1007/BF02892870
Contribution de la spectrometrie mössbauer et de la spectrometrie d'absorption X A l'etude de la non-stoechiometrie de CuFe2O4
B. Hannoyer, M. Lenglet, R. Chopova and J.C. Tellier Materials Chemistry and Physics 13 (5) 449 (1985) https://doi.org/10.1016/0254-0584(85)90017-3
Cation distribution of the system Zn1−xCoxFeMnO4 by x-ray, electrical conductivity and Mössbauer studies
P S Jain and V S Darshane Pramana 20 (1) 7 (1983) https://doi.org/10.1007/BF02846175
Mössbauer Study of Copper Ferrites
J. Janicki, J. Pietrzak, A. Por??bska and J. Suwalski physica status solidi (a) 72 (1) 95 (1982) https://doi.org/10.1002/pssa.2210720107
Distribution of Cobalt Ions among Octahedral and Tetrahedral Sites in CoxZn1—xAl2O4Spinel Solid Solutions
P. Porta and A. Anichini Zeitschrift für Physikalische Chemie 127 (2) 223 (1981) https://doi.org/10.1524/zpch.1981.127.2.223
Jahn-Teller-type crystal distortions in copper ferrite
R. G. Kulkarni and Vishwas U. Patil Journal of Materials Science 15 (9) 2221 (1980) https://doi.org/10.1007/BF00552309
Key Elements: d4–d8-Elements
W. Pies and A. Weiss Landolt-Börnstein - Group III Condensed Matter, Key Elements: d4–d8-Elements 7f 563 (1977) https://doi.org/10.1007/10201577_58
Key Elements: d4–d8-Elements
W. Pies and A. Weiss Landolt-Börnstein - Group III Condensed Matter, Key Elements: d4–d8-Elements 7f 539 (1977) https://doi.org/10.1007/10201577_57
On the crystal distortion in several spinel systems
Y. Obi Physica Status Solidi (a) 25 (1) 293 (1974) https://doi.org/10.1002/pssa.2210250128
References for III/7
W. Pies and A. Weiss Landolt-Börnstein - Group III Condensed Matter, References for III/7 7g 55 (1974) https://doi.org/10.1007/10201585_6
The distribution of nickel ions among octahedral and tetrahedral sites in NiAl2O4MgAl2O4 solid solutions
P. Porta, F.S. Stone and R.G. Turner Journal of Solid State Chemistry 11 (2) 135 (1974) https://doi.org/10.1016/0022-4596(74)90108-X
Part B
V. J. Folen Landolt-Börnstein - Group III Condensed Matter, Part B 4b 343 (1970) https://doi.org/10.1007/10201438_107
Part B
V. J. Folen Landolt-Börnstein - Group III Condensed Matter, Part B 4b 365 (1970) https://doi.org/10.1007/10201438_112
Ferrite memory materials
A. Greifer IEEE Transactions on Magnetics 5 (4) 774 (1969) https://doi.org/10.1109/TMAG.1969.1066649
Magnetism, microstructure and crystal chemistry of spinel ferrites
A Broese van Groenou, P.F Bongers and A.L Stuyts Materials Science and Engineering 3 (6) 317 (1969) https://doi.org/10.1016/0025-5416(69)90042-1
Mössbauer resonance of Fe57 in oxidic spinels containing Cu and Fe
B.J. Evans and S.S. Hafner Journal of Physics and Chemistry of Solids 29 (9) 1573 (1968) https://doi.org/10.1016/0022-3697(68)90100-5
Oxygen Content and Thermomagnetic Properties in Cu1-ξMgξFe2O4
Kohji Ohbayashi and Shuichi Iida Journal of the Physical Society of Japan 23 (4) 776 (1967) https://doi.org/10.1143/JPSJ.23.776
Effect of Chemical Stoichiometry on the Copper Ferrite Phase Transition
H. M. O'Bryan, H. J. Levinstein and R. C. Sherwood Journal of Applied Physics 37 (3) 1438 (1966) https://doi.org/10.1063/1.1708503
Reaktionen in und an festen Stoffen
Karl Hauffe Anorganische und allgemeine Chemie in Einzeldarstellungen, Reaktionen in und an festen Stoffen 2 48 (1966) https://doi.org/10.1007/978-3-642-88042-1_3
Effect of Oxygen Defficiency on the Magnetic Properties of Copper Ferrite
Kohji Ohbayashi, Kay Kohn and Shuichi Iida Journal of the Physical Society of Japan 21 (12) 2740 (1966) https://doi.org/10.1143/JPSJ.21.2740
The hyperfine fields of 57Fe at the A and B sites in copper ferrite (CuFe2O4)
B.J. Evans, S. Hafner and G.M. Kalvius Physics Letters 23 (1) 24 (1966) https://doi.org/10.1016/0031-9163(66)90237-X
Magnetic Properties of the Dual Oxide System CuO–Fe2O3
W. O. Milligan, Y. Tamai and J. T. Richardson Journal of Applied Physics 34 (7) 2093 (1963) https://doi.org/10.1063/1.1729743
Landolt-Börnstein
H. A. Alperin, G. Asch, E. S. Dayhoff, et al. Landolt-Börnstein 215 (1962) https://doi.org/10.1007/978-3-662-43312-6_2
Die elektrische Quadrupolaufspaltung von Al27in Spinell MgAl2O4und Korund Al2O3
E. Brun and S. Hafner Zeitschrift für Kristallographie 117 (1) 37 (1962) https://doi.org/10.1524/zkri.1962.117.1.37
Ferrimagnetism
W P Wolf Reports on Progress in Physics 24 (1) 212 (1961) https://doi.org/10.1088/0034-4885/24/1/306
Ordnung/Unordnung und Ultrarotabsorption IV. Die Absorption einiger Metalloxyde mit Spinellstruktur
Stefan Hafner Zeitschrift für Kristallographie 115 (5-6) 331 (1961) https://doi.org/10.1524/zkri.1961.115.5-6.331
A Study of Basic Brick from Copper Anode Furnaces
G. R. RIGBY and B. HAMILTON Journal of the American Ceramic Society 44 (5) 201 (1961) https://doi.org/10.1111/j.1151-2916.1961.tb15360.x
Influence of manganese and oxygen content on tetragonal deformation of copper ferrite
A. Bergstein and L. červinka Czechoslovak Journal of Physics 11 (8) 584 (1961) https://doi.org/10.1007/BF01689155
Internal asymmetry in complex compounds
I. B. Bersuker Journal of Structural Chemistry 2 (6) 676 (1961) https://doi.org/10.1007/BF00747323
To the structure and oxygen content of copper and copper-manganese ferrite
A. Bergstein and L. Červinka Journal of Physics and Chemistry of Solids 18 (2-3) 264 (1961) https://doi.org/10.1016/0022-3697(61)90175-5
Some Crystallographic and Magnetic Properties of Square-Loop Materials in Ferrite Systems Containing Copper
Aaron P. Greifer and William J. Croft Journal of Applied Physics 30 (4) S34 (1959) https://doi.org/10.1063/1.2185957
Effects of Annealing on the Saturation Induction of Ferrites Containing Nickel and/or Copper
L. G. Van Uitert Journal of Applied Physics 28 (4) 478 (1957) https://doi.org/10.1063/1.1722775
Electronic properties of transition-metal oxides—I
J.D. Dunitz and L.E. Orgel Journal of Physics and Chemistry of Solids 3 (1-2) 20 (1957) https://doi.org/10.1016/0022-3697(57)90043-4
Layer Structures of Magnetic Oxides
Shūichi Iida Journal of the Physical Society of Japan 12 (3) 222 (1957) https://doi.org/10.1143/JPSJ.12.222
On the Constitution of Copper-Ferrite
Isao Kushima and Tsuyoshi Amanuma Journal of the Japan Institute of Metals 20 (8) 473 (1956) https://doi.org/10.2320/jinstmet1952.20.8_473
Progress in Low Temperature Physics
L. Weil Progress in Low Temperature Physics 1 344 (1955) https://doi.org/10.1016/S0079-6417(08)60091-8
Proposed Structure of Certain Spinels at High Temperature
William T. Holser The Journal of Chemical Physics 23 (4) 764 (1955) https://doi.org/10.1063/1.1742116
Reaktionen in und an Festen Stoffen
Karl Hauffe Anorganische und Allgemeine Chemie in Einzeldarstellungen, Reaktionen in und an Festen Stoffen 2 41 (1955) https://doi.org/10.1007/978-3-642-52680-0_3
Ferrites
A Fairweather, F F Roberts and A J E Welch Reports on Progress in Physics 15 (1) 142 (1952) https://doi.org/10.1088/0034-4885/15/1/306
Sur quelques progrès récents dans la cristallographie des spinelles, en particulier des ferrites
E.F. Bertaut Journal de Physique et le Radium 12 (3) 252 (1951) https://doi.org/10.1051/jphysrad:01951001203025200
Anomalie de longueur des ferrites
Louis Weil Journal de Physique et le Radium 12 (3) 260 (1951) https://doi.org/10.1051/jphysrad:01951001203026000
Propriétés des composés ferromagnétiques non métalliques
André Michel, Georges Chaudron and Jacques Bénard Journal de Physique et le Radium 12 (3) 189 (1951) https://doi.org/10.1051/jphysrad:01951001203018900
Pages :
101 à 199 sur 199 articles