La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
E.I. Adirovitch
J. Phys. Radium, 17 8-9 (1956) 705-707
Citations de cet article :
62 articles
Assessing dose rate effects in TL and OSL dosimeters: A critical look into dose rate models
S. Motta and E.G. Yukihara Radiation Measurements 179 107305 (2024) https://doi.org/10.1016/j.radmeas.2024.107305
Spatial distribution of greenish blue phosporescence in HPHT synthetic diamond: The dual role of boron
Tian Shao, Fanglin Lyu, Taiqiao Liu, Liangcheng Yi, Qiao Chen and Andy H. Shen Carbon 218 118730 (2024) https://doi.org/10.1016/j.carbon.2023.118730
Sensory properties of dosimetric materials under conditions of parameter fluctuations: Monte Carlo method
P.V. Yavorskyi, O.M. Pop and V.T. Maslyuk Semiconductor Physics, Quantum Electronics and Optoelectronics 27 (04) 450 (2024) https://doi.org/10.15407/spqeo27.04.450
LUMINI PACKAGE FOR AB INITIO MODELING OF DOSIMETRIC EXPERIMENTS
P.V. Yavorskyi Problems of Atomic Science and Technology 154 (2024) https://doi.org/10.46813/2024-153-154
Advanced Thermoluminescence Spectroscopy as a Research Tool for Semiconductor and Photonic Materials: A Review and Perspective
Farida A Selim physica status solidi (a) 220 (10) (2023) https://doi.org/10.1002/pssa.202200712
Luminescence in Anion-Deficient Hafnia Nanotubes
Artem O. Shilov, Robert V. Kamalov, Maxim S. Karabanalov, Andrey V. Chukin, Alexander S. Vokhmintsev, Georgy B. Mikhalevsky, Dmitry A. Zamyatin, Ahmed M. A. Henaish and Ilya A. Weinstein Nanomaterials 13 (24) 3109 (2023) https://doi.org/10.3390/nano13243109
Dosimetry
Hossam Donya Dosimetry (2022) https://doi.org/10.5772/intechopen.102728
George Kitis 157 (2022) https://doi.org/10.1016/B978-0-323-85471-9.00004-X
Trap-State-Induced Becquerel Type of Photoluminescence Decay in DPA-Activated Silicon Nanocrystals
K. Kůsová, T. Popelář, I. Pelant, et al. The Journal of Physical Chemistry C 125 (3) 2055 (2021) https://doi.org/10.1021/acs.jpcc.0c09072
Spectroscopy for Materials Characterization
Federico Moretti Spectroscopy for Materials Characterization 201 (2021) https://doi.org/10.1002/9781119698029.ch7
On the stochastic uncertainties of thermally and optically stimulated luminescence signals: A Monte Carlo approach
Vasilis Pagonis, Sebastian Kreutzer, Alex Roy Duncan, et al. Journal of Luminescence 219 116945 (2020) https://doi.org/10.1016/j.jlumin.2019.116945
Formulation of OTOR differential equation for thermoluminescence using temperature dependent frequency factor
L. Lovedy Singh Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 474 63 (2020) https://doi.org/10.1016/j.nimb.2020.04.029
Relating structural phase transitions to mechanoluminescence: The case of the Ca1−xSr Al2Si2O8:1%Eu2+,1%Pr3+ anorthite
Ang Feng, Simon Michels, Alfredo Lamberti, Wim Van Paepegem and Philippe F. Smet Acta Materialia 183 493 (2020) https://doi.org/10.1016/j.actamat.2019.11.014
Luminescence properties of tricalcium phosphate doped with dysprosium
Chirag Malik, Najdeep Kaur, Birendra Singh and Anant Pandey Applied Radiation and Isotopes 109062 (2020) https://doi.org/10.1016/j.apradiso.2020.109062
The shift of the thermoluminescence peak maximum temperature versus heating rate, trap filling and trap emptying: Predictions, experimental verification and comparison
George Kitis, Elina Mouza and George. S. Polymeris Physica B: Condensed Matter 577 411754 (2020) https://doi.org/10.1016/j.physb.2019.411754
Stimulated luminescence emission: From phenomenological models to master analytical equations
George Kitis, George S. Polymeris and Vasilis Pagonis Applied Radiation and Isotopes 153 108797 (2019) https://doi.org/10.1016/j.apradiso.2019.05.041
New designed software to deconvolute the thermoluminescence glow-curves
Mohamed El-Kinawy, Hassan F. El-Nashar and Nabil El-Faramawy SN Applied Sciences 1 (8) (2019) https://doi.org/10.1007/s42452-019-0876-7
Retrapping probability of charge in traps: The parameter and its implication in luminescence
Ngangbam Chandrasekhar, Lisham Paris Chanu and R.K. Gartia IOP Conference Series: Materials Science and Engineering 360 012034 (2018) https://doi.org/10.1088/1757-899X/360/1/012034
Defect and intrinsic luminescence of CeO2nanocrystals
Vladyslav Seminko, Pavel Maksimchuk, Irina Bespalova, et al. physica status solidi (b) 254 (4) 1600488 (2017) https://doi.org/10.1002/pssb.201600488
Derivation of general order kinetics equation using probability theory
Longjam Lovedy Singh Radiation Effects and Defects in Solids 172 (3-4) 271 (2017) https://doi.org/10.1080/10420150.2017.1303836
Glow curve analysis and calculation of thermoluminescence parameters
Z. Vejnović, M. Pavlović, P. Hadžić and M. Davidović Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics 9 (2) 167 (2017) https://doi.org/10.5937/SPSUNP1702167V
Spectral structure of the X-ray stimulated phosphorescence of monocrystalline ZnSe
V. Ya. Degoda, N. Yu. Pavlova, G.P. Podust and A.O. Sofiienko Physica B: Condensed Matter 465 1 (2015) https://doi.org/10.1016/j.physb.2015.02.021
Role of shallow electronic traps formed by oxygen vacancies in formation of luminescent properties of CeO2-x nanocrystals
P.O. Maksimchuk Functional Materials 21 (2) 152 (2014) https://doi.org/10.15407/fm21.02.152
Formation of luminescent centers in CeO2 nanocrystals
A. Masalov, O. Viagin, P. Maksimchuk, et al. Journal of Luminescence 145 61 (2014) https://doi.org/10.1016/j.jlumin.2013.07.020
Resolving the limitation of the peak fitting and peak shape methods in the determination of the activation energy of thermoluminescence glow peaks
A.M. Sadek, H.M. Eissa, A.M. Basha and G. Kitis Journal of Luminescence 146 418 (2014) https://doi.org/10.1016/j.jlumin.2013.10.031
Thermoluminescence glow curve involving any extent of retrapping or any order of kinetics
JAI PRAKASH Pramana 81 (3) 521 (2013) https://doi.org/10.1007/s12043-013-0579-3
Derivation of an expression for lifetime (τ) in OTOR model
L. Lovedy Singh and R.K. Gartia Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 308 21 (2013) https://doi.org/10.1016/j.nimb.2013.04.059
Theoretical derivation of a simplified form of the OTOR/GOT differential equation
L. Lovedy Singh and R.K. Gartia Radiation Measurements 59 160 (2013) https://doi.org/10.1016/j.radmeas.2013.04.022
An Algorithm to Optimize the Calculation of the Fourth Order Runge-Kutta Method Applied to the Numerical Integration of Kinetics Coupled Differential Equations
Sadao Isotani, Walter Maigon Pontuschka and Seiji Isotani Applied Mathematics 03 (11) 1583 (2012) https://doi.org/10.4236/am.2012.311218
Persistent luminescence fading in Sr_2MgSi_2O_7:Eu^2+,R^3+ materials: a thermoluminescence study
Hermi F. Brito, Jorma Hölsä, Högne Jungner, et al. Optical Materials Express 2 (3) 287 (2012) https://doi.org/10.1364/OME.2.000287
Thermally and Optically Stimulated Luminescence
Thermally and Optically Stimulated Luminescence 371 (2011) https://doi.org/10.1002/9781119993766.refs
A simple function for the description of near-exponential decays: The stretched or compressed hyperbola
Lorne Whitehead, Ryan Whitehead, Bernard Valeur and Mario Berberan-Santos American Journal of Physics 77 (2) 173 (2009) https://doi.org/10.1119/1.3008007
Mathematical functions for the analysis of luminescence decays with underlying distributions: 2. Becquerel (compressed hyperbola) and related decay functions
M.N. Berberan-Santos, E.N. Bodunov and B. Valeur Chemical Physics 317 (1) 57 (2005) https://doi.org/10.1016/j.chemphys.2005.05.026
Models in thermoluminescence
C. Furetta and G. Kitis Journal of Materials Science 39 (7) 2277 (2004) https://doi.org/10.1023/B:JMSC.0000019989.60268.d7
Effect of the heating rate on the red TL of quartz
N.A. Spooner and A.D. Franklin Radiation Measurements 35 (1) 59 (2002) https://doi.org/10.1016/S1350-4487(01)00109-3
An approximation of phosphorescence decay kinetics of ideal phosphors by a general order kinetics model
Z. Vejnović, M.B. Pavlović and M. Davidović Physica B: Condensed Matter 304 (1-4) 309 (2001) https://doi.org/10.1016/S0921-4526(01)00491-4
Millisecond phosphorescence of free electrons in pure GaAs
A. M. Gilinsky and K. S. Zhuravlev Applied Physics Letters 79 (21) 3455 (2001) https://doi.org/10.1063/1.1420575
Growth, characterization and properties of CVD diamond films for applications as radiation detectors
S. Sciortino La Rivista del Nuovo Cimento 22 (10) 1 (1999) https://doi.org/10.1007/BF02872270
Thermoluminescence
C. Furetta La Rivista del Nuovo Cimento 21 (2) 1 (1998) https://doi.org/10.1007/BF02900192
Interactive kinetics in thermally stimulated luminescence and conductivity and its effect on the trap depth determination
A. Opanowicz Journal of Applied Physics 84 (9) 5218 (1998) https://doi.org/10.1063/1.368773
Luminescence models
S.W.S. McKeever and R. Chen Radiation Measurements 27 (5-6) 625 (1997) https://doi.org/10.1016/S1350-4487(97)00203-5
On the error in the activation energy obtained by the initial rise method for thermally stimulated processes in dielectrics
Ant⊚nio E. Do Nascimento, Piotr Trzesniak, Mário E. G. Valerio and José F. De Lima Radiation Effects and Defects in Solids 134 (1-4) 147 (1995) https://doi.org/10.1080/10420159508227202
Mechanisms responsible for the appearance of a thermoluminescence glow curve
J. Prakash and D. Prasad Physica Status Solidi (a) 142 (1) 281 (1994) https://doi.org/10.1002/pssa.2211420131
Thermoluminescence glow curve with second order kinetics
Jai Prakash Solid State Communications 85 (7) 647 (1993) https://doi.org/10.1016/0038-1098(93)90326-I
Stochastic approach to recombination luminescence with retrapping in the steady state
J. R. Swandic Physical Review B 45 (2) 622 (1992) https://doi.org/10.1103/PhysRevB.45.622
A. Mandowski and J. Swiatek 588 (1991) https://doi.org/10.1109/ISE.1991.167278
General-order kinetics in thermoluminescence resulting from a distribution of the frequency factor
C. Christodoulides physica status solidi (a) 118 (1) 333 (1990) https://doi.org/10.1002/pssa.2211180138
Single level isothermal TL-decay (with energy level distribution and retrapping)
William F. Hornyak and Alan D. Franklin International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 14 (1-2) 81 (1988) https://doi.org/10.1016/1359-0189(88)90045-3
Thermoluminescence Governed by Simultaneous Thermal Stimulation of Electrons and Holes
R. Chen, V. K. Mathur, Joanne F. Rhodes, et al. physica status solidi (b) 126 (1) 361 (1984) https://doi.org/10.1002/pssb.2221260143
The Analysis of Thermally Stimulated Processes
R. CHEN and Y. KIRSH The Analysis of Thermally Stimulated Processes 1 (1981) https://doi.org/10.1016/B978-0-08-022930-0.50007-4
Mixed first and second order kinetics in thermally stimulated processes
R. Chen, N. Kristianpoller, Z. Davidson and R. Visocekas Journal of Luminescence 23 (3-4) 293 (1981) https://doi.org/10.1016/0022-2313(81)90135-6
The Analysis of Thermally Stimulated Processes
R. CHEN and Y. KIRSH The Analysis of Thermally Stimulated Processes 144 (1981) https://doi.org/10.1016/B978-0-08-022930-0.50012-8
The Analysis of Thermally Stimulated Processes
R. CHEN and Y. KIRSH The Analysis of Thermally Stimulated Processes 17 (1981) https://doi.org/10.1016/B978-0-08-022930-0.50008-6
Luminescence from calcite single crystals irradiated at 4·2 K
Joseph Cunningham International Journal for Radiation Physics and Chemistry 3 (4) 467 (1971) https://doi.org/10.1016/0020-7055(71)90011-8
Thermoluminescence in Sodium Silicate by uv Excitation
S. A. A. Winer and R. Chen The Journal of Chemical Physics 51 (10) 4530 (1969) https://doi.org/10.1063/1.1671823
Thermoluminescence of Semiconducting Diamonds
A. Halperin and R. Chen Physical Review 148 (2) 839 (1966) https://doi.org/10.1103/PhysRev.148.839
Decay characteristics of luminescence in ZnS phosphors by pulse light excitation
Shionoya Shigeo, Era Koh and Katayama Hirohiko Journal of Physics and Chemistry of Solids 26 (4) 697 (1965) https://doi.org/10.1016/0022-3697(65)90022-3
Luminescence and absorption studies on sapphire with flash light excitation
H.W. Lehmann and Hs.H. Gunthard Journal of Physics and Chemistry of Solids 25 (9) 941 (1964) https://doi.org/10.1016/0022-3697(64)90031-9
Thermoluminescence in Quartz
W. L. Medlin The Journal of Chemical Physics 38 (5) 1132 (1963) https://doi.org/10.1063/1.1733814
Thermoluminescence in Dolomite
W. L. Medlin The Journal of Chemical Physics 34 (2) 672 (1961) https://doi.org/10.1063/1.1701008
Decay of Phosphorescence in CaCO3, MgCO3, CaMg(CO3)2, and CaSO4
W. L. Medlin Physical Review 122 (3) 837 (1961) https://doi.org/10.1103/PhysRev.122.837
Thermoluminescence in anhydrite
W.L. Medlin Journal of Physics and Chemistry of Solids 18 (2-3) 238 (1961) https://doi.org/10.1016/0022-3697(61)90168-8