Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Perspective: Chain dynamics of unfolded and intrinsically disordered proteins from nanosecond fluorescence correlation spectroscopy combined with single-molecule FRET

Benjamin Schuler
The Journal of Chemical Physics 149 (1) (2018)
https://doi.org/10.1063/1.5037683

Single-Molecule FRET Spectroscopy and the Polymer Physics of Unfolded and Intrinsically Disordered Proteins

Benjamin Schuler, Andrea Soranno, Hagen Hofmann and Daniel Nettels
Annual Review of Biophysics 45 (1) 207 (2016)
https://doi.org/10.1146/annurev-biophys-062215-010915

Non-Newtonian Viscosity of Dilute Polymer Solutions

R. Pamies, M. C. Lopez Martinez, J. G. Hernandez Cifre and J. Garcia de la Torre
Macromolecules 38 (4) 1371 (2005)
https://doi.org/10.1021/ma0482617

On the difference between weakly and strongly entangled linear polymers

Yu.A. Altukhov, V.N. Pokrovskii and G.V. Pyshnograi
Journal of Non-Newtonian Fluid Mechanics 121 (2-3) 73 (2004)
https://doi.org/10.1016/j.jnnfm.2004.05.001

Network constitutive equation with internal viscosity: application to stress jump prediction

N Sun, C.F Chan Man Fong and D De Kee
Journal of Non-Newtonian Fluid Mechanics 95 (2-3) 135 (2000)
https://doi.org/10.1016/S0377-0257(00)00163-4

The mesoscopic approach to the dynamics of polymer melts: consequences for the constitutive equation1Dedicated to the memory of Professor Gianni Astarita.1

V.N. Pokrovskii, Yu.A. Altukhov and G.V. Pyshnograi
Journal of Non-Newtonian Fluid Mechanics 76 (1-3) 153 (1998)
https://doi.org/10.1016/S0377-0257(97)00116-X

Properties of Constitutive Equations for Undilute Linear Polymers Based on the Molecular Theory

Yu. G. Yanovsky, V. N. Pokrovskii, Yu. A. Altukhov and G. V. Pyshnograi
International Journal of Polymeric Materials 36 (1-2) 75 (1997)
https://doi.org/10.1080/00914039708044139

The model theory of viscoelastic relaxation properties of bulk cross‐linked polymers. Interchain friction effects

Yuli Ya. Gotlib and Andrew A. Gurtovenko
Macromolecular Theory and Simulations 6 (2) 523 (1997)
https://doi.org/10.1002/mats.1997.040060214

Polymer‐mode‐coupling theory of the slow dynamics of entangled macromolecular fluids

Kenneth S. Schweizer, Matthias Fuchs, G. Szamel, Marina Guenza and Hai Tang
Macromolecular Theory and Simulations 6 (6) 1037 (1997)
https://doi.org/10.1002/mats.1997.040060604

Orientational–deformational nature of flow birefringence in solutions of rigid‐chain polymers

N. V. Pogodina
Journal of Polymer Science Part B: Polymer Physics 31 (7) 795 (1993)
https://doi.org/10.1002/polb.1993.090310707

Transient stress responses predicted by the internal viscosity model in elongational flow

C. W. Manke and Michael C. Williams
Rheologica Acta 30 (4) 316 (1991)
https://doi.org/10.1007/BF00404192

Shear-induced deformation of polystyrene coils in dilute solution from small angle neutron scattering 2. Variation of shear gradient, molecular mass and solvent viscosity

P. Lindner and R. C. Oberth�r
Colloid & Polymer Science 266 (10) 886 (1988)
https://doi.org/10.1007/BF01410843

The theory of oscillating birefringence of solutions of linear polymers. Dilute and concentrated systems

V.N. Pokrovskii and Yu.K. Kokorin
Polymer Science U.S.S.R. 29 (10) 2385 (1987)
https://doi.org/10.1016/0032-3950(87)90172-9

Testing viscometric predictions of the internal viscosity model, using dilute viscous theta solutions

J. E. McAdams and M. C. Williams
Rheologica Acta 25 (3) 225 (1986)
https://doi.org/10.1007/BF01357950

Steady‐state opticohydrodynamic properties of DNA: Molecular weight dependence and the internal viscosity problem

Charles F. Reeg and Rodney E. Harrington
Biopolymers 21 (7) 1315 (1982)
https://doi.org/10.1002/bip.360210705

Thermophysical Properties Research Literature Retrieval Guide 1900–1980

J. F. Chaney, V. Ramdas, C. R. Rodriguez and M. H. Wu
Thermophysical Properties Research Literature Retrieval Guide 1900–1980 179 (1982)
https://doi.org/10.1007/978-1-4757-1493-7_3

Dynamics of Polyelectrolyte Solutions. I. A Dynamical Model for Polyelectrolyte

Akira Hatano
Journal of the Physical Society of Japan 50 (1) 286 (1981)
https://doi.org/10.1143/JPSJ.50.286

Gamma radiation‐initiated polymerization of styrene at high pressure. II. Chain termination

P. W. Moore, J. G. Clouston and R. P. Chaplin
Journal of Polymer Science: Polymer Chemistry Edition 19 (7) 1671 (1981)
https://doi.org/10.1002/pol.1981.170190707

Equivalent normal coordinate systems for the polymer diffusion equation with hydrodynamic interaction

A. Perico
Journal of Polymer Science: Polymer Physics Edition 18 (1) 161 (1980)
https://doi.org/10.1002/pol.1980.180180113

The shape effect in the birefringence of solutions of polymethyl methacrylate stereocomplexes

L.I. Mekenitskaya, L.K. Golova and Yu.B. Amerik
Polymer Science U.S.S.R. 22 (4) 987 (1980)
https://doi.org/10.1016/0032-3950(80)90292-0

Viscoelastic properties of rigid and semiflexible particles in solution. I

Kazuyoshi Iwata
The Journal of Chemical Physics 71 (2) 931 (1979)
https://doi.org/10.1063/1.438384

Rheology of Pharmaceutical Systems: Oscillatory and Steady Shear of Non-Newtonian Viscoelastic Liquids

George B. Thurston and Alfred Martin
Journal of Pharmaceutical Sciences 67 (11) 1499 (1978)
https://doi.org/10.1002/jps.2600671103

Origin of internal viscosities in dilute polymer solutions

P. G. de Gennes
The Journal of Chemical Physics 66 (12) 5825 (1977)
https://doi.org/10.1063/1.433861

Low velocity gradient flow birefringence and viscosity changes in hyaluronate solutions as a function of pH

T. W. Barrett and R. E. Harrington
Biopolymers 16 (10) 2167 (1977)
https://doi.org/10.1002/bip.1977.360161007

Internal viscosity in the dynamics of polymer molecules. II. A new model for the Lamb–Matheson–Philippoff increment

D. A. Macinnes
Journal of Polymer Science: Polymer Physics Edition 15 (4) 657 (1977)
https://doi.org/10.1002/pol.1977.180150406

Dynamics of polymer molecules: a comparison of strongly coupled correlated (internal viscosity) and non-correlated (local mode) models for molecular weight independent conformational relaxation

Donald A. McInnes and Alastair M. North
Polymer 18 (5) 505 (1977)
https://doi.org/10.1016/0032-3861(77)90169-0

Thermal degradation of polyacrolein synthesized in the presence of boron trifluoride etherate

V.Z. Annenkova, L.M. Antonik, V.M. Annenkova and T.I. Vakul'skaya
Polymer Science U.S.S.R. 18 (1) 61 (1976)
https://doi.org/10.1016/0032-3950(76)90055-1

Rheological Theories · Measuring Techniques in Rheology Test Methods in Rheology · Fractures Rheological Properties of Materials · Rheo-Optics · Biorheology

A. Peterlin
Rheological Theories · Measuring Techniques in Rheology Test Methods in Rheology · Fractures Rheological Properties of Materials · Rheo-Optics · Biorheology 412 (1975)
https://doi.org/10.1007/978-3-662-41458-3_61

Rheological properties of internal viscosity models with stress symmetry

Enrique R. Bazúa and Michael C. Williams
Journal of Polymer Science: Polymer Physics Edition 12 (5) 825 (1974)
https://doi.org/10.1002/pol.1974.180120501

Orientierung und Deformation von Makromolekülen in verschiedenen Fließzuständen und damit gekoppelte Anisotropie der physikalischen Eigenschaften von Polymerlösungen

R. Takserman-Krozer
Colloid and Polymer Science 252 (10) 802 (1974)
https://doi.org/10.1007/BF01554979

Molecular formulation of the internal viscosity in polymer dynamics, and stress symmetry

Enrique R. Bazúa and Michael C. Williams
The Journal of Chemical Physics 59 (6) 2858 (1973)
https://doi.org/10.1063/1.1680417

Slow motion of long‐chain molecules in solution with internal correlations

B. Caroli, D. Saint‐James and G. Jannink
Journal of Polymer Science: Polymer Physics Edition 11 (12) 2467 (1973)
https://doi.org/10.1002/pol.1973.180111214

A role of internal viscosity in the intrinsic hydrodynamic and rheooptical properties of polymer solutions

A. Peterlin
Journal of Polymer Science: Polymer Symposia 43 (1) 187 (1973)
https://doi.org/10.1002/polc.5070430117

Optico‐hydrodynamic properties of high molecular weight DNA. II. Effect of aqueous glycerol solvents

Rodney E. Harrington
Biopolymers 10 (2) 337 (1971)
https://doi.org/10.1002/bip.360100210

Irreversible Statistical Mechanics of Polymer Chains. II. Viscosity

Kazuyoshi Iwata
The Journal of Chemical Physics 54 (4) 1570 (1971)
https://doi.org/10.1063/1.1675056

Polymer Dynamics. V. The Shear Dependent Properties of Linear Polymers Including Intrinsic Viscosity, Flow Dichroism and Birefringence, Relaxation, and Normal Stresses

Ichiro Noda and John E. Hearst
The Journal of Chemical Physics 54 (6) 2342 (1971)
https://doi.org/10.1063/1.1675185

Internal Viscosity and Quasielastic Scattering

R. Bidaux, J. P. Cotton, B. Farnoux and G. Jannink
The Journal of Chemical Physics 54 (9) 3717 (1971)
https://doi.org/10.1063/1.1675418

Irreversible Statistical Mechanics of Polymer Chains. I. Fokker–Planck Diffusion Equation

Kazuyoshi Iwata
The Journal of Chemical Physics 54 (1) 12 (1971)
https://doi.org/10.1063/1.1674580

Thermodynamic and hydrodynamic behavior of dilute polymer solutions

Guy C. Berry and Edward F. Casassa
Journal of Polymer Science: Macromolecular Reviews 4 (1) 1 (1970)
https://doi.org/10.1002/pol.1970.230040101

Effect of Internal Viscosity on the Deformation of a Linear Macromolecule in a Sheared Solution

H. C. Booij and P. H. van Wiechen
The Journal of Chemical Physics 52 (10) 5056 (1970)
https://doi.org/10.1063/1.1672743

Intrinsic viscosity and axial extension ratio of random‐coiling macromolecules in a hydrodynamic shear field

F. R. Cottrell, E. W. Merrill and K. A. Smith
Journal of Polymer Science Part A-2: Polymer Physics 8 (2) 289 (1970)
https://doi.org/10.1002/pol.1970.160080207

Optico‐hydrodynamic properties of high molecular weight DNA from steady‐state flow birefringence and viscosity at extremely low velocity gradients

Rodney K. Harrington
Biopolymers 9 (2) 159 (1970)
https://doi.org/10.1002/bip.1970.360090204

Dynamic Mechanical Properties of Polystyrene Solutions from 23 to 300 MHz

R. S. Moore, H. J. McSkimin, C. Gieniewski and P. Andreatch
The Journal of Chemical Physics 50 (12) 5088 (1969)
https://doi.org/10.1063/1.1671023

Flow birefringence and intrinsic viscosity of a T2 bacteriophage DNA–methylated bovine serum albumin complex

Rodney E. Harrington and Kathleen V. Martin
Biopolymers 7 (5) 627 (1969)
https://doi.org/10.1002/bip.1969.360070502

Fortschritte der Hochpolymeren-Forschung

H. Janeschitz-Kriegl
Advances in Polymer Science, Fortschritte der Hochpolymeren-Forschung 6/2 170 (1969)
https://doi.org/10.1007/BFb0051073

Conformation of polyisobutylene in dilute solution subjected to a hydrodynamic shear field

F. R. Cottrell, E. W. Merrill and K. A. Smith
Journal of Polymer Science Part A-2: Polymer Physics 7 (8) 1415 (1969)
https://doi.org/10.1002/pol.1969.160070811

Relaxation characteristics and intrinsic birefringence and viscosity of polystyrene solutions for a wide range of molecular weights

G. B. Thurston and J. L. Schrag
Journal of Polymer Science Part A-2: Polymer Physics 6 (7) 1331 (1968)
https://doi.org/10.1002/pol.1968.160060710

Effect of finite number of segments on flow birefringence extinction angle and the determination of internal viscosity and chain relaxation time

G. B. Thurston
Kolloid-Zeitschrift & Zeitschrift für Polymere 222 (1) 34 (1968)
https://doi.org/10.1007/BF01507364

Hydrodynamic properties of dilute polymer solutions in a general velocity field

R. Takserman‐Krozer
Journal of Polymer Science Part C: Polymer Symposia 16 (5) 2855 (1967)
https://doi.org/10.1002/polc.5070160539

Effect of the conditions of thermal denaturing on the optical and hydrodynamic parameters of nucleic acid molecules

E.V. Frisman, L.V. Shchagina and V.I. Vorob'ev
Polymer Science U.S.S.R. 9 (8) 1967 (1967)
https://doi.org/10.1016/0032-3950(67)90447-9

Molecular-Weight Dependence of Viscoelastic Properties of Polystyrene Solutions

George B. Thurston
The Journal of Chemical Physics 47 (9) 3582 (1967)
https://doi.org/10.1063/1.1712426

Frequency dependence of intrinsic viscosity of macromolecules with finite internal viscosity

A. Peterlin
Journal of Polymer Science Part A-2: Polymer Physics 5 (1) 179 (1967)
https://doi.org/10.1002/pol.1967.160050115

Influence of Finite Number of Chain Segments, Hydrodynamic Interaction, and Internal Viscosity on Intrinsic Birefringence and Viscosity of Polymer Solutions in an Oscillating Laminar Flow Field

G. B. Thurston and A. Peterlin
The Journal of Chemical Physics 46 (12) 4881 (1967)
https://doi.org/10.1063/1.1840651

Non‐newtonian intrinsic viscosity and streaming birefringence of polymer solutions

A. Peterlin
Journal of Polymer Science Part C: Polymer Symposia 15 (1) 337 (1967)
https://doi.org/10.1002/polc.5070150129

On the influence of kinetic rigidity of macromolecules on the extinction angle and flow birefringence. Dumb-bell model

Yu.Ya. Gotlib and Yu.Ya. Svetlov
Polymer Science U.S.S.R. 8 (2) 347 (1966)
https://doi.org/10.1016/0032-3950(66)90400-X

Hydrodynamics of Linear Macromolecules. I. Finite Segment Length

Chr. Reinhold and A. Peterlin
The Journal of Chemical Physics 44 (11) 4333 (1966)
https://doi.org/10.1063/1.1726625

Molecular weight dependence of the kinetic rigidity (internal viscosity) of a polysegmental polymer chain

V.P. Budtov and Yu.Ya. Gotlib
Polymer Science U.S.S.R. 7 (3) 530 (1965)
https://doi.org/10.1016/0032-3950(65)90095-X