La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
S. Foner
J. Phys. Radium, 20 2-3 (1959) 336-340
Citations de cet article :
58 articles
Phenomenological description of spin dynamics in antiferromagnets: Short history and modern development
E. G. Galkina and B. A. Ivanov Low Temperature Physics 47 (9) 765 (2021) https://doi.org/10.1063/10.0005799
Spin Dynamics for Antiferromagnets and Ultrafast Spintronics
B. A. Ivanov Journal of Experimental and Theoretical Physics 131 (1) 95 (2020) https://doi.org/10.1134/S1063776120070079
Dimensionality-driven spin-flop transition in quasi-one-dimensionalPrBa2Cu4O8
Xiaofeng Xu, A. Carrington, A. I. Coldea, et al. Physical Review B 81 (22) (2010) https://doi.org/10.1103/PhysRevB.81.224435
Magnetic Oxides
Gerald F. Dionne Magnetic Oxides 343 (2009) https://doi.org/10.1007/978-1-4419-0054-8_7
A diamagnetic Mossbauer probe method for studying a solid-gas interface and related catalytic processes
N. I. Morozova, M. I. Afanasov, R. A. Astashkin, et al. Moscow University Chemistry Bulletin 64 (5) 249 (2009) https://doi.org/10.3103/S0027131409050046
5s5p element dopant cations: Møssbauer probes for studying chemical reactions at the solid-gas interface
P. B. Fabrichnyi, M. I. Afanasov and M. Danot Russian Journal of General Chemistry 78 (5) 1060 (2008) https://doi.org/10.1134/S1070363208050393
Oxidation-induced change in spin polarization of the antimony Mössbauer dopant on the surface of Cr2O3 crystallites
M.I Afanasov, M.V Korolenko, M Danot and P.B Fabritchnyi Solid State Communications 124 (10-11) 407 (2002) https://doi.org/10.1016/S0038-1098(02)00552-5
Mössbauer study of the Impact of Hydrogen Fluoride on Tin Probe Ions Located on the Surface of Cr2O3 microcrystals
P.B. Fabritchnyi, M.I. Afanasov, I.S. Bezverkhy and M. Danot Journal of Solid State Chemistry 162 (2) 293 (2001) https://doi.org/10.1006/jssc.2001.9318
Mössbauer investigation of the reaction between HCl and tin dopant ions located on the surface of Cr2O3 microcrystals
I. S. Bezverkhy, M. I. Afanasov, P. B. Fabritchnyi, S. Maingaud and M. Danot Journal of Radioanalytical and Nuclear Chemistry 232 (1-2) 241 (1998) https://doi.org/10.1007/BF02383747
Mössbauer Study of the Chemical Behavior of Tin Dopant Atoms on the Surface of Cr2O3Microcrystals: Transformations Induced by Exposure to Ambient Atmosphere after Contact with H2S
M. Danot, M.I. Afanasov, A.A. Ryabchikov, et al. Journal of Solid State Chemistry 132 (2) 284 (1997) https://doi.org/10.1006/jssc.1997.7457
Mössbauer study of reorganization processes on the surface of Cr2O3 crystallites after reaction of the Sn2+ dopant with halogen vapor
P.B. Fabritchnyi, M.I. Afanasov, I.S. Bezverkhy, M. Danot and J. Rouxel Solid State Communications 102 (10) 749 (1997) https://doi.org/10.1016/S0038-1098(97)00081-1
Local environment and dynamic characteristics of the 119Sn(II) and 119Sn(IV) Mössbauer probes on the surface of Cr2O3 exposed to hydrogen sulfide atmosphere
M Danot, M.I Afanasov, A.A Ryabchikov, et al. Solid State Communications 99 (4) 249 (1996) https://doi.org/10.1016/0038-1098(96)00236-0
Local environment and vibrational characteristics of 119Sn(II) Mössbauer probe atoms located on the surface of Cr2O3 microcrystals
M.I. Afanasov, M. Danot, A.A. Ryabchikov, et al. Materials Research Bulletin 31 (5) 465 (1996) https://doi.org/10.1016/S0025-5408(96)00021-9
Microwave Ferrite Devices: The First Ten Years
K.J. Button IEEE Transactions on Microwave Theory and Techniques 32 (9) 1088 (1984) https://doi.org/10.1109/TMTT.1984.1132820
High Field Magnetism
Mitsuhiro Motokawa High Field Magnetism 219 (1983) https://doi.org/10.1016/B978-0-444-86566-3.50040-8
The susceptibility of archetypical spin glasses: A phenomenological model approach to the frequency and field dependence of χ and its implications on magnetization measurements
A.J. Van Duyneveldt and C.A.M. Mulder Physica B+C 114 (1) 82 (1982) https://doi.org/10.1016/0378-4363(82)90011-0
Differential susceptibility as a magnetic probe: Some recent applications (invited)
A. J. van Duyneveldt Journal of Applied Physics 53 (11) 8006 (1982) https://doi.org/10.1063/1.330291
Submillimeter ESR experiments using pulsed high magnetic field
M. Motokawa, S. Kuroda and M. Date Journal of Applied Physics 50 (B11) 7762 (1979) https://doi.org/10.1063/1.326814
Cluster variation theory of the paramagnetic anisotropy in MnF2susceptibilities
L. F. Libelo, R. L. Kligman and Tomagasu Tanaka Physical Review B 17 (3) 1277 (1978) https://doi.org/10.1103/PhysRevB.17.1277
Über den Zusammenhang zwischen der Temperaturabhängigkeit der magnetischen Suszeptibilität und der spezifischen Wärme bei Antiferromagneten
Hans Wilhelm Schöpgens and Helmut Alexander Über den Zusammenhang zwischen der Temperaturabhängigkeit der magnetischen Suszeptibilität und der spezifischen Wärme bei Antiferromagneten 25 (1977) https://doi.org/10.1007/978-3-663-05299-9_7
Ein statistisches Modell für den paramagnetischen Zustand eines Gitters mit antiferromagnetischer Kopplung
Klaus Dräger Berichte der Bunsengesellschaft für physikalische Chemie 79 (11) 996 (1975) https://doi.org/10.1002/bbpc.19750791114
Physical Principles of Far-Infrared Radiation
Methods in Experimental Physics, Physical Principles of Far-Infrared Radiation 10 302 (1973) https://doi.org/10.1016/S0076-695X(08)60028-9
Growth-Induced Magnetic Anisotropy of Epitaxial Films of Mixed Garnets Containing Europium
M. D. Sturge, R. C. LeCraw, R. D. Pierce, S. J. Licht and L. K. Shick Physical Review B 7 (3) 1070 (1973) https://doi.org/10.1103/PhysRevB.7.1070
High‐Field Antiferromagnetic Resonance in α‐Fe203
B. R. Morrison, A. H. Morrish and G. J. Troup physica status solidi (b) 56 (1) 183 (1973) https://doi.org/10.1002/pssb.2220560117
Magnetic susceptibility of RbMnF3
E.E. Bragg and M.S. Seehra Physics Letters A 39 (1) 29 (1972) https://doi.org/10.1016/0375-9601(72)90313-1
The specific heat of RbMnF3 and MnF2 between 0·5 and 4·2°K
A.J. Henderson, H. Meyer and H.J. Guggenheim Journal of Physics and Chemistry of Solids 32 (5) 1047 (1971) https://doi.org/10.1016/S0022-3697(71)80349-9
High-Magnetic-Field Spectroscopy of MnF2 and MnF2:Fe2+ in the Far Infrared
R. Blewitt and R. Weber Journal of Applied Physics 41 (3) 884 (1970) https://doi.org/10.1063/1.1659001
Ultrasonic Attenuation near and above the Spin-Flop Transition of MnF2
Y. Shapira and J. Zak Physical Review 170 (2) 503 (1968) https://doi.org/10.1103/PhysRev.170.503
Antiferromagnetic Resonance in NiCl26H2O
Muneyuki Date and Mitsuhiro Motokawa Journal of the Physical Society of Japan 22 (1) 165 (1967) https://doi.org/10.1143/JPSJ.22.165
Advances in Catalysis
Charles P. Poole and D.S. MacIver Advances in Catalysis 17 223 (1967) https://doi.org/10.1016/S0360-0564(08)60688-4
Magnetic Properties of Coordination and Organometallic Transition Metal Compounds
E. König Landolt-Börnstein - Group II Molecules and Radicals, Magnetic Properties of Coordination and Organometallic Transition Metal Compounds 2 171 (1966) https://doi.org/10.1007/10201187_28
Magnetic Properties of Coordination and Organometallic Transition Metal Compounds
E. König Landolt-Börnstein - Group II Molecules and Radicals, Magnetic Properties of Coordination and Organometallic Transition Metal Compounds 2 449 (1966) https://doi.org/10.1007/10201187_57
Magnetic Properties of Coordination and Organometallic Transition Metal Compounds
E. König Landolt-Börnstein - Group II Molecules and Radicals, Magnetic Properties of Coordination and Organometallic Transition Metal Compounds 2 91 (1966) https://doi.org/10.1007/10201187_18
Low-Temperature Relaxation Effects in Pulsed-Field Electron-Paramagnetic-Resonance Spectra of Rare-Earth Ions
L. Rimai, R. W. Bierig and B. D. Silverman Physical Review 146 (1) 222 (1966) https://doi.org/10.1103/PhysRev.146.222
Magnetic Properties of Coordination and Organometallic Transition Metal Compounds
E. König Landolt-Börnstein - Group II Molecules and Radicals, Magnetic Properties of Coordination and Organometallic Transition Metal Compounds 2 88 (1966) https://doi.org/10.1007/10201187_17
Magnetism
Simon Foner Magnetism 383 (1963) https://doi.org/10.1016/B978-0-12-575301-2.50016-X
Solid State Physics
Philip W. Anderson Solid State Physics 14 99 (1963) https://doi.org/10.1016/S0081-1947(08)60260-X
Magnetic Susceptibility of MnF2
Charles Trapp and J. W. Stout Physical Review Letters 10 (5) 157 (1963) https://doi.org/10.1103/PhysRevLett.10.157
Far Infrared Antiferromagnetic Resonance in MnO and NiO
A. J. Sievers and M. Tinkham Physical Review 129 (4) 1566 (1963) https://doi.org/10.1103/PhysRev.129.1566
Optically Observed Exchange Splittings in Antiferromagnetic Cr2O3
K. A. Wickersheim Journal of Applied Physics 34 (4) 1224 (1963) https://doi.org/10.1063/1.1729446
Magnetism
Kenneth J. Button and Thomas S. Hartwick Magnetism 621 (1963) https://doi.org/10.1016/B978-0-12-575301-2.50019-5
Magnetism
Junjiro Kanamori Magnetism 127 (1963) https://doi.org/10.1016/B978-0-12-575301-2.50011-0
Biquadratic Exchange and the Behavior of Some Antiferromagnetic Substances
D. S. Rodbell, I. S. Jacobs, J. Owen and E. A. Harris Physical Review Letters 11 (1) 10 (1963) https://doi.org/10.1103/PhysRevLett.11.10
Spin Arrangements and Crystal Structure, Domains, and Micromagnetics
J. Samuel Smart Spin Arrangements and Crystal Structure, Domains, and Micromagnetics 63 (1963) https://doi.org/10.1016/B978-0-12-575303-6.50009-9
High Magnetic Field Research
Benjamin Lax Journal of Applied Physics 33 (3) 1025 (1962) https://doi.org/10.1063/1.1728591
Pulsed Critical Field Measurements in Magnetic Systems
Simon Foner and Shou-Ling Hou Journal of Applied Physics 33 (3) 1289 (1962) https://doi.org/10.1063/1.1728697
Festkörperprobleme 1
H. Severin Advances in Solid State Physics, Festkörperprobleme 1 1 260 (1962) https://doi.org/10.1007/BFb0108980
Millimeter Wave Parametric Amplification with Antiferromagnetic Materials
R. A. Moore Journal of Applied Physics 33 (3) 1274 (1962) https://doi.org/10.1063/1.1728689
Proceedings of the Seventh Conference on Magnetism and Magnetic Materials
R. A. Moore Proceedings of the Seventh Conference on Magnetism and Magnetic Materials 1274 (1962) https://doi.org/10.1007/978-1-4899-6391-8_101
Theory of random dilute magnets with application to MnZnF
2
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 265 (1321) 264 (1962) https://doi.org/10.1098/rspa.1962.0008
Antiferromagnetic Resonance in CoCl26H2O
Muneyuki Date Journal of the Physical Society of Japan 16 (7) 1337 (1961) https://doi.org/10.1143/JPSJ.16.1337
Low temperature paramagnetic resonance of trapped O2
S. Foner, H. Meyer and W.H. Kleiner Journal of Physics and Chemistry of Solids 18 (4) 273 (1961) https://doi.org/10.1016/0022-3697(61)90118-4
Antiferromagnetic Resonance in (Cr2O3)1−x·(Al2O3)x Single Crystals
Simon Foner Journal of Applied Physics 32 (3) S63 (1961) https://doi.org/10.1063/1.2000501
Spin-Flopping in MnF2 by High Magnetic Fields
I. S. Jacobs Journal of Applied Physics 32 (3) S61 (1961) https://doi.org/10.1063/1.2000500
Magnetic Scattering of Neutrons by Exchange-Coupled Lattices
A. W. Sáenz Physical Review 119 (5) 1542 (1960) https://doi.org/10.1103/PhysRev.119.1542
Magnetic Transitions in Ti2O3 and V2O3
P. H. Carr and S. Foner Journal of Applied Physics 31 (5) S344 (1960) https://doi.org/10.1063/1.1984740
Pulsed Field Measurements of Large Zero-Field Splittings:V3+inAl2O3
S. Foner and W. Low Physical Review 120 (5) 1585 (1960) https://doi.org/10.1103/PhysRev.120.1585
Direct Cation- -Cation Interactions in Several Oxides
John B. Goodenough Physical Review 117 (6) 1442 (1960) https://doi.org/10.1103/PhysRev.117.1442