Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Investigation of optical pumping in cesium atoms with circularly polarized light and radio-frequency field: a theoretical approach

Hossein Davoodi Yeganeh and Zahra Shaterzadeh-Yazdi
Physical Chemistry Chemical Physics 27 (18) 9774 (2025)
https://doi.org/10.1039/D4CP03210A

Neutral atom quantum computers for the applications in condensed matter physics

Shweta, Inderpreet Kaur, Neha Singh, Suranita Kanjilal and Bodhaditya Santra
Journal of Physics: Condensed Matter 37 (17) 173001 (2025)
https://doi.org/10.1088/1361-648X/adbb9b

Atomic Quantum Technologies for Quantum Matter and Fundamental Physics Applications

Jorge Yago Malo, Luca Lepori, Laura Gentini and Maria Luisa (Marilù) Chiofalo
Technologies 12 (5) 64 (2024)
https://doi.org/10.3390/technologies12050064

Hyperpolarization of Nuclei by the Method of Spin-Exchange Optical Pumping

G. Yu. Grigoriev, A. S. Lagutin, A. V. Maksimychev, L. I. Menshikov and P. L. Menshikov
Physics of Particles and Nuclei 55 (3) 648 (2024)
https://doi.org/10.1134/S1063779624030420

Discovery of Ground-state Absorption Line Polarization and Sub-Gauss Magnetic Field in the Post-AGB Binary System 89 Her

Heshou Zhang, Manuele Gangi, Francesco Leone, Andrew Taylor and Huirong Yan
The Astrophysical Journal Letters 902 (1) L7 (2020)
https://doi.org/10.3847/2041-8213/abb8e1

Dynamic Polarization of Electron Spins Interacting with Nuclei in Semiconductor Nanostructures

D. S. Smirnov, T. S. Shamirzaev, D. R. Yakovlev and M. Bayer
Physical Review Letters 125 (15) (2020)
https://doi.org/10.1103/PhysRevLett.125.156801

Double resonance fequency light shift compensation in optically oriented laser-pumped alkali atoms

A. A. Baranov, S. V. Ermak, E. A. Sagitov, R. V. Smolin and V. V. Semenov
Journal of Experimental and Theoretical Physics 121 (3) 393 (2015)
https://doi.org/10.1134/S1063776115100040

Nuclear spin physics in quantum dots: An optical investigation

Bernhard Urbaszek, Xavier Marie, Thierry Amand, et al.
Reviews of Modern Physics 85 (1) 79 (2013)
https://doi.org/10.1103/RevModPhys.85.79

Ultralow-power local laser control of the dimer density in alkali-metal vapors through photodesorption

Pankaj K. Jha, Konstantin E. Dorfman, Zhenhuan Yi, et al.
Applied Physics Letters 101 (9) 091107 (2012)
https://doi.org/10.1063/1.4747537

Optical pumping and negative luminescence polarization in charged GaAs quantum dots

Andrew Shabaev, Eric A. Stinaff, Allan S. Bracker, et al.
Physical Review B 79 (3) (2009)
https://doi.org/10.1103/PhysRevB.79.035322

Magnetometric sensitivity optimization for nonlinear optical rotation with frequency-modulated light: Rubidium D2 line

D. F. Jackson Kimball, L. R. Jacome, Srikanth Guttikonda, Eric J. Bahr and Lok Fai Chan
Journal of Applied Physics 106 (6) (2009)
https://doi.org/10.1063/1.3225917

Fine structure and optical pumping of spins in individual semiconductor quantum dots

Allan S Bracker, Daniel Gammon and Vladimir L Korenev
Semiconductor Science and Technology 23 (11) 114004 (2008)
https://doi.org/10.1088/0268-1242/23/11/114004

Electron Spin Pumping of Rb Atoms on He Nanodroplets via Nondestructive Optical Excitation

Gerald Auböck, Johann Nagl, Carlo Callegari and Wolfgang E. Ernst
Physical Review Letters 101 (3) (2008)
https://doi.org/10.1103/PhysRevLett.101.035301

The life of π and σ—A tutorial review of the ubiquitous use of these symbols in Zeeman and magnetic‐resonance spectroscopy

John Ashley Weil
Concepts in Magnetic Resonance Part A 32A (2) 134 (2008)
https://doi.org/10.1002/cmr.a.20105

Polarization from Aligned Atoms as a Diagnostic of Circumstellar, Active Galactic Nuclei, and Interstellar Magnetic Fields. II. Atoms with Hyperfine Structure

Huirong Yan and A. Lazarian
The Astrophysical Journal 657 (1) 618 (2007)
https://doi.org/10.1086/510847

Quantum-Dot Spin-State Preparation with Near-Unity Fidelity

Mete Atatüre, Jan Dreiser, Antonio Badolato, Alexander Högele, Khaled Karrai and Atac Imamoglu
Science 312 (5773) 551 (2006)
https://doi.org/10.1126/science.1126074

Theory of Chemical Reaction Dynamics

Marcis Auzinsh
NATO Science Series II: Mathematics, Physics and Chemistry, Theory of Chemical Reaction Dynamics 145 447 (2005)
https://doi.org/10.1007/1-4020-2165-8_22

Optical pumping of the Na D2 transition with elliptically polarized light

B. T. H. Varcoe, R. T. Sang, W. R. Macgillivary, M. C. Standage and P. M. Farrell
Journal of Modern Optics 46 (5) 787 (1999)
https://doi.org/10.1080/09500349908231304

Particle detected Fourier transform NMR at single crystal surfaces—6Li on Ru(001)

H Arnolds, D Fick, H Unterhalt, A Voss and H.J Jänsch
Solid State Nuclear Magnetic Resonance 11 (1-2) 87 (1998)
https://doi.org/10.1016/S0926-2040(97)00099-4

Optical pumping magnetic resonance in high magnetic fields: Characterization of nuclear relaxation during pumping

Matthew P. Augustine and Kurt W. Zilm
The Journal of Chemical Physics 105 (8) 2998 (1996)
https://doi.org/10.1063/1.472800

Atomic coherence effects within the sodium D1manifold. II. Coherent optical pumping

D E Nikonov, U W Rathe, M O Scully, et al.
Quantum Optics: Journal of the European Optical Society Part B 6 (4) 245 (1994)
https://doi.org/10.1088/0954-8998/6/4/004

Polarized heavy ion source based on spin and charge exchange collisions and laser optical pumping

M. Tanaka, T. Ohshima, K. Katori, et al.
Hyperfine Interactions 74 (1-4) 205 (1992)
https://doi.org/10.1007/BF02398630

Optical pumping of diatomic molecules in the electronic ground state: Classical and quantum approaches

M. P. Auzin’sh and R. S. Ferber
Physical Review A 43 (5) 2374 (1991)
https://doi.org/10.1103/PhysRevA.43.2374

Laser-rf double-resonance measurements of the hyperfine structure in Sc ii

N. B. Mansour, T. Dinneen, L. Young and K. T. Cheng
Physical Review A 39 (11) 5762 (1989)
https://doi.org/10.1103/PhysRevA.39.5762

High-precision measurements of hyperfine structure in Tm II, N2+ and Sc II

N.B. Mansour, T.P. Dinneen and L. Young
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 40-41 252 (1989)
https://doi.org/10.1016/0168-583X(89)90972-5

Saturation spectroscopy with laser optical pumping in atomic barium

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld and D. E. Murnick
Physical Review A 21 (6) 1955 (1980)
https://doi.org/10.1103/PhysRevA.21.1955

Laser fluorescence state selected and detected molecular beam magnetic resonance in I2

Akimichi Yokozeki and J. S. Muenter
The Journal of Chemical Physics 72 (6) 3796 (1980)
https://doi.org/10.1063/1.439594

Zero-field hyperfine structure measurements of the metastable states 3d 2 4s 4 F 3/2, 9/2 of45Sc using laser-fluorescence atomic-beam-magnetic-resonance technique

W. Ertmer and B. Hofer
Zeitschrift f�r Physik A Atoms and Nuclei 276 (1) 9 (1976)
https://doi.org/10.1007/BF01414586

Measurement of the Zero-Field Hyperfine Structure of a Single Vibration-Rotation Level ofNa2by a Laser-Fluorescence Molecular-Beam-Resonance Technique

S. D. Rosner, R. A. Holt and T. D. Gaily
Physical Review Letters 35 (12) 785 (1975)
https://doi.org/10.1103/PhysRevLett.35.785

Optical-Pumping Determination of the Nuclear Magnetic Moments of the Radioisotopes Mercury-193, -193m, -195m, and -197m

P. A. Moskowitz, C. H. Liu, G. Fulop and H. H. Stroke
Physical Review C 4 (2) 620 (1971)
https://doi.org/10.1103/PhysRevC.4.620