La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
L. Tisza
J. Phys. Radium, 1 8 (1940) 350-358
Citations de cet article :
52 articles
Disentangling temperature and Reynolds number effects in quantum turbulence
Juan Ignacio Polanco, Philippe-E. Roche, Luminita Danaila and Emmanuel Lévêque Proceedings of the National Academy of Sciences 122 (27) (2025) https://doi.org/10.1073/pnas.2426598122
Superfluid fraction of interacting bosonic gases
Daniel Pérez-Cruz, Grigori E. Astrakharchik and Pietro Massignan Physical Review A 111 (1) (2025) https://doi.org/10.1103/PhysRevA.111.L011302
An historical account of the two-fluid theory for superfluidity
J J Hernández-Gómez and R W Gómez-González European Journal of Physics 42 (4) 043001 (2021) https://doi.org/10.1088/1361-6404/abf97d
Cartography of the space of theories: An interpretational chart for fields that are both (dark) matter and spacetime
Niels C.M. Martens and Dennis Lehmkuhl Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72 217 (2020) https://doi.org/10.1016/j.shpsb.2020.08.004
Advanced Quantum Condensed Matter Physics
Michael El-Batanouny Advanced Quantum Condensed Matter Physics (2020) https://doi.org/10.1017/9781108691291
Excitations in the quantum liquid4He: A review
H R Glyde Reports on Progress in Physics 81 (1) 014501 (2018) https://doi.org/10.1088/1361-6633/aa7f90
Dynamics of vortex line density and heat transfer processes in superfluid helium
L. P. Kondaurova Low Temperature Physics 44 (1) 29 (2018) https://doi.org/10.1063/1.5020893
Laszlo Tisza and the two-fluid model of superfluidity
Sébastien Balibar Comptes Rendus. Physique 18 (9-10) 586 (2017) https://doi.org/10.1016/j.crhy.2017.10.016
Towards quantum turbulence in cold atomic fermionic superfluids
Aurel Bulgac, Michael McNeil Forbes and Gabriel Wlazłowski Journal of Physics B: Atomic, Molecular and Optical Physics 50 (1) 014001 (2017) https://doi.org/10.1088/1361-6455/50/1/014001
The Specific Heat of Liquid Helium
Vincenzo Molinari, Domiziano Mostacci and Barry D. Ganapol Journal of Computational and Theoretical Transport 45 (3) 212 (2016) https://doi.org/10.1080/23324309.2016.1156549
Wave Propagation in an Ideal Gas: First and Second Sound
Vincenzo Molinari, Domiziano Mostacci and Barry D. Ganapol Journal of Computational and Theoretical Transport 45 (4) 268 (2016) https://doi.org/10.1080/23324309.2016.1157494
Dynamics of the density of quantized vortex lines in superfluid turbulence
D. Khomenko, L. Kondaurova, V. S. L'vov, et al. Physical Review B 91 (18) (2015) https://doi.org/10.1103/PhysRevB.91.180504
Dispersion relation of longitudinal waves in liquid He-4 in the framework of quantum macroscopic equations derived from Bohm’s potential
Vincenzo Molinari and Domiziano Mostacci Physica A: Statistical Mechanics and its Applications 435 28 (2015) https://doi.org/10.1016/j.physa.2015.04.034
Phonon hydrodynamics and its applications in nanoscale heat transport
Yangyu Guo and Moran Wang Physics Reports 595 1 (2015) https://doi.org/10.1016/j.physrep.2015.07.003
History of Artificial Cold, Scientific, Technological and Cultural Issues
Sébastien Balibar Boston Studies in the Philosophy and History of Science, History of Artificial Cold, Scientific, Technological and Cultural Issues 299 93 (2014) https://doi.org/10.1007/978-94-007-7199-4_6
First and second sound in a highly elongated Fermi gas at unitarity
Yan-Hua Hou, Lev P. Pitaevskii and Sandro Stringari Physical Review A 88 (4) (2013) https://doi.org/10.1103/PhysRevA.88.043630
Slippery Wave Functions
Leo P. Kadanoff Journal of Statistical Physics 152 (5) 805 (2013) https://doi.org/10.1007/s10955-013-0795-8
Modern trends in Superconductivity and Superfluidity
M. Yu. Kagan Lecture Notes in Physics, Modern trends in Superconductivity and Superfluidity 874 3 (2013) https://doi.org/10.1007/978-94-007-6961-8_1
Vortex, Molecular Spin and Nanovorticity
Percival McCormack SpringerBriefs in Physics, Vortex, Molecular Spin and Nanovorticity 1 (2012) https://doi.org/10.1007/978-1-4614-0257-2_1
Response of an oscillating superleak transducer to a pointlike heat source
A. Quadt, B. Schröder, M. Uhrmacher, et al. Physical Review Special Topics - Accelerators and Beams 15 (3) (2012) https://doi.org/10.1103/PhysRevSTAB.15.031001
Quantum Turbulence: Achievements and Challenges
W. F. Vinen Journal of Low Temperature Physics 161 (5-6) 419 (2010) https://doi.org/10.1007/s10909-010-0229-9
Laszlo Tisza (1907–2009): An Appreciation
Allan Griffin Journal of Low Temperature Physics 157 (1-2) 1 (2009) https://doi.org/10.1007/s10909-009-9945-4
New light on the intriguing history of superfluidity in liquid4He
Allan Griffin Journal of Physics: Condensed Matter 21 (16) 164220 (2009) https://doi.org/10.1088/0953-8984/21/16/164220
Dzyaloshinsky-Moriya interaction in theS=12quasi-one-dimensional antiferromagnetCu2Cl4⋅H8C4SO2as determined via high-frequency ESR
M. Fujisawa, K. Shiraki, S. Okubo, et al. Physical Review B 80 (1) (2009) https://doi.org/10.1103/PhysRevB.80.012408
Quantum Statistical Mechanics
Quantum Statistical Mechanics 141 (2009) https://doi.org/10.1017/CBO9780511626555.009
An existence result for a quantum BGK model
Anne Nouri Mathematical and Computer Modelling 47 (3-4) 515 (2008) https://doi.org/10.1016/j.mcm.2007.05.002
The Discovery of Superfluidity
Sébastien Balibar Journal of Low Temperature Physics 146 (5-6) 441 (2007) https://doi.org/10.1007/s10909-006-9276-7
An Introduction to Quantum Turbulence
W. F. Vinen Journal of Low Temperature Physics 145 (1-4) 7 (2006) https://doi.org/10.1007/s10909-006-9240-6
Two-fluid hydrodynamic modes in a trapped superfluid gas
E. Taylor and A. Griffin Physical Review A 72 (5) (2005) https://doi.org/10.1103/PhysRevA.72.053630
Poincaré Seminar 2003
Sébastien Balibar Poincaré Seminar 2003 17 (2004) https://doi.org/10.1007/978-3-0348-7932-3_2
Two-fluid hydrodynamics for a trapped weakly interacting Bose gas
E. Zaremba, A. Griffin and T. Nikuni Physical Review A 57 (6) 4695 (1998) https://doi.org/10.1103/PhysRevA.57.4695
Superfluid transport and its applications in space
S.W.K. Yuan, J.M. Lee, S. Caspi, et al. Cryogenics 30 (3) 222 (1990) https://doi.org/10.1016/0011-2275(90)90081-M
Thermodynamics of liquidHe4
W. Meyer, K. W. Wong and Lin-Ing Kung Physical Review B 15 (11) 5283 (1977) https://doi.org/10.1103/PhysRevB.15.5283
Phonon hydrodynamics in solids
H. Beck, P. F. Meier and A. Thellung Physica Status Solidi (a) 24 (1) 11 (1974) https://doi.org/10.1002/pssa.2210240102
Some reflections on the two-fluid model and Bose-Einstein condensation
J. de Boer Physica 69 (1) 193 (1973) https://doi.org/10.1016/0031-8914(73)90215-2
Helium 4
V. PESHKOV Helium 4 166 (1971) https://doi.org/10.1016/B978-0-08-015816-7.50016-X
Evolution of Particle Physics
Evolution of Particle Physics 335 (1970) https://doi.org/10.1016/B978-0-12-186150-6.50033-9
Radiation of Sound in He-II Films
Gerald L. Pollack Physical Review 161 (1) 172 (1967) https://doi.org/10.1103/PhysRev.161.172
Wave-Mode Modification in Liquid Helium with Partially Clamped Normal Fluid
Gerald L. Pollack and J. R. Pellam Physical Review 137 (6A) A1676 (1965) https://doi.org/10.1103/PhysRev.137.A1676
Molekularakustik
Werner Schaaffs Molekularakustik 466 (1963) https://doi.org/10.1007/978-3-642-87538-0_20
Magnetic Cooling
E Ambler and R P Hudson Reports on Progress in Physics 18 (1) 251 (1955) https://doi.org/10.1088/0034-4885/18/1/307
Transport phenomena of liouid helium II in narrow slits
C.S. Hung, B. Hunt and P. Winkel Physica 18 (8-9) 629 (1952) https://doi.org/10.1016/S0031-8914(52)80062-X
The Theory of the Propagation in Liquid Helium II of `Temperature-Waves' of Finite Amplitude
H N V Temperley Proceedings of the Physical Society. Section A 64 (2) 105 (1951) https://doi.org/10.1088/0370-1298/64/2/301
Some considerations about temperature gradients in helium II
C.J Gorter, K.W Taconis and J.J.M Beenakker Physica 17 (9) 841 (1951) https://doi.org/10.1016/0031-8914(51)90109-7
On the thermodynamics of the two fluid model of helium II
C.J. Gorter Physica 15 (5-6) 523 (1949) https://doi.org/10.1016/0031-8914(49)90098-1
On the irreversible processes in liquid helium II
C.J. Gorter and J.H. Mellink Physica 15 (3-4) 285 (1949) https://doi.org/10.1016/0031-8914(49)90105-6
Liquid Helium II
H. S. GREEN Nature 161 (4089) 391 (1948) https://doi.org/10.1038/161391a0
A general kinetic theory of liquids V. Liquid He II
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 194 (1037) 244 (1948) https://doi.org/10.1098/rspa.1948.0078
The Theory of the Propagation of Second Sound in Helium II
R B Dingle Proceedings of the Physical Society 61 (1) 9 (1948) https://doi.org/10.1088/0959-5309/61/1/303
Statistical Mechanics of Mixtures of Bose‐Einstein and Fermi‐Dirac Systems
William Band The Journal of Chemical Physics 16 (4) 343 (1948) https://doi.org/10.1063/1.1746883
Ultrasonics research and the properties of matter
Charles Kittel Reports on Progress in Physics 11 (1) 205 (1947) https://doi.org/10.1088/0034-4885/11/1/308
On a Connection between the Fountain Effect, Second Sound, and Thermal Conductivity in Liquid Helium II
Laszlo Tisza Physical Review 72 (4) 353 (1947) https://doi.org/10.1103/PhysRev.72.353