La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Charles Guillaud
J. Phys. Radium, 12 3 (1951) 489-491
Citations de cet article :
47 articles
Tunable enhancement of magnetization dynamics by selection of the crystallographic orientation of the hybrid interface of exchange-coupled
α−Fe2O3
/permalloy heterostructures
Hassan Al-Hamdo, Tobias Wagner, Philipp Schwenke, Gutenberg Kendzo, Maximilian Dausend, Laura Scheuer, Misbah Yaqoob, Vitaliy I. Vasyuchka, Philipp Pirro, Olena Gomonay and Mathias Weiler Physical Review B 111 (18) (2025) https://doi.org/10.1103/PhysRevB.111.L180401
Mapping Curie Depth Across Western Canada From a Wavelet Analysis of Magnetic Anomaly Data
É. Gaudreau, P. Audet and D.A. Schneider Journal of Geophysical Research: Solid Earth 124 (5) 4365 (2019) https://doi.org/10.1029/2018JB016726
Structural and magnetic properties of the nanocomposite materials based on a mesoporous silicon dioxide matrix
N. A. Grigor’eva, H. Eckerlebe, A. A. Eliseev, et al. Journal of Experimental and Theoretical Physics 124 (3) 476 (2017) https://doi.org/10.1134/S106377611702011X
Effects of Crystalline Phase and Particle Size on the Properties of Plate-Like Fe2O3 Nanoparticles during γ- to α-Phase Transformation
Shilin Liu, Jinping Zhou and Lina Zhang The Journal of Physical Chemistry C 115 (9) 3602 (2011) https://doi.org/10.1021/jp111263p
Morphological, structural and magnetic properties of α-Fe2O3 nanoparticles in an amorphous alumina matrix obtained by aqueous combustion method
Marin Tadić, Vladan Kusigerski, Dragana Marković, et al. Journal of Alloys and Compounds 486 (1-2) 839 (2009) https://doi.org/10.1016/j.jallcom.2009.07.077
Field-induced spin–flop transitions of interacting nanosized α-Fe2O3particles dispersed in a silica glass matrix
Sudip Mukherjee, Arun Kumar Pal, S Bhattacharya and S Chattopadhyay Journal of Physics: Condensed Matter 20 (5) 055204 (2008) https://doi.org/10.1088/0953-8984/20/05/055204
Collective Behavior of Magnetic Nanoparticles in Polyelectrolyte Brushes
Won San Choi, Hye Young Koo, Ju Young Kim and Wilhelm T. S. Huck Advanced Materials 20 (23) 4504 (2008) https://doi.org/10.1002/adma.200801423
Synthesis and magnetic properties of concentrated α-Fe2O3 nanoparticles in a silica matrix
Marin Tadić, Dragana Marković, Vojislav Spasojević, et al. Journal of Alloys and Compounds 441 (1-2) 291 (2007) https://doi.org/10.1016/j.jallcom.2006.09.099
Materials Science and Technology
Maurice Guillot Materials Science and Technology (2006) https://doi.org/10.1002/9783527603978.mst0038
Facile Route to α-FeOOH and α-Fe2O3 Nanorods and Magnetic Property of α-Fe2O3 Nanorods
Bo Tang, Guangli Wang, Linhai Zhuo, Jiechao Ge and Lijuan Cui Inorganic Chemistry 45 (13) 5196 (2006) https://doi.org/10.1021/ic060097b
Magnetic properties of α-Fe2O3 nanowires
Y.Y. Xu, X.F. Rui, Y.Y. Fu and H. Zhang Chemical Physics Letters 410 (1-3) 36 (2005) https://doi.org/10.1016/j.cplett.2005.04.090
Surface effects in $\mathsf{\alpha}$-Fe$\mathsf{_{2}}$O$\mathsf{_{3}}$ nanoparticles
R. D. Zysler, M. Vasquez Mansilla and D. Fiorani The European Physical Journal B 41 (2) 171 (2004) https://doi.org/10.1140/epjb/e2004-00306-7
Size dependence of the spin-flop transition in hematite nanoparticles
R. D. Zysler, D. Fiorani, A. M. Testa, et al. Physical Review B 68 (21) (2003) https://doi.org/10.1103/PhysRevB.68.212408
A Monte Carlo model of the MCD behavior of hematite colloids
A.R.B. de Castro and R.D. Zysler Journal of Magnetism and Magnetic Materials 257 (1) 51 (2003) https://doi.org/10.1016/S0304-8853(02)00985-X
Annealing effects on magnetic properties of acicular hematite nanoparticles
M.Vasquez Mansilla, R Zysler, D Fiorani and L Suber Physica B: Condensed Matter 320 (1-4) 206 (2002) https://doi.org/10.1016/S0921-4526(02)00683-X
Investigation of magnetic properties of interacting Fe2O3 nanoparticles
R.D. Zysler, D. Fiorani and A.M. Testa Journal of Magnetism and Magnetic Materials 224 (1) 5 (2001) https://doi.org/10.1016/S0304-8853(00)01328-7
Structure and magnetic properties of thermally treated nanohematite
R.D. Zysler, M. Vasquez-Mansilla, C. Arciprete, et al. Journal of Magnetism and Magnetic Materials 224 (1) 39 (2001) https://doi.org/10.1016/S0304-8853(00)01365-2
Annealing effects on structural and magnetic properties of α-Fe2O3 nanoparticles
M Vasquez-Mansilla, R.D Zysler, C Arciprete, et al. Journal of Magnetism and Magnetic Materials 226-230 1907 (2001) https://doi.org/10.1016/S0304-8853(00)00858-1
Effects of thermal treatments on structural and magnetic properties of acicular α-Fe2O3 nanoparticles
L. Suber, D. Fiorani, P. Imperatori, et al. Nanostructured Materials 11 (6) 797 (1999) https://doi.org/10.1016/S0965-9773(99)00369-4
Rockmagnetic properties of fine-grained natural low-temperature haematite with reference to remanence acquisition mechanisms in red beds
M. J. Dekkers and J. H. Linssen Geophysical Journal International 99 (1) 1 (1989) https://doi.org/10.1111/j.1365-246X.1989.tb02012.x
Magnetic properties of submicronic α-Fe2O3 particles of uniform size distribution at 300 K
N. Amin, S. Arajs and E. Matijevic Physica Status Solidi (a) 104 (1) K65 (1987) https://doi.org/10.1002/pssa.2211040150
The morin transition in small α-Fe2O3 particles
G. J. Muench, S. Arajs and E. Matijević physica status solidi (a) 92 (1) 187 (1985) https://doi.org/10.1002/pssa.2210920117
Thermophysical Properties Research Literature Retrieval Guide 1900–1980
J. F. Chaney, V. Ramdas, C. R. Rodriguez and M. H. Wu Thermophysical Properties Research Literature Retrieval Guide 1900–1980 337 (1982) https://doi.org/10.1007/978-1-4757-1499-9_15
Linear magnetic birefringence analysis of the transverse field induced phase transition in hematite
C. Leycuras, H. Le Gall, D. Minella, E.G. Rudashewsky and V.S. Merkoulov Physica B+C 89 43 (1977) https://doi.org/10.1016/0378-4363(77)90048-1
Investigations on the gas phase crystal growth of hematite
P. Peshev and A. Toshev Materials Research Bulletin 9 (7) 873 (1974) https://doi.org/10.1016/0025-5408(74)90166-4
Crystal Chemistry and Semiconduction in Transition Metal Binary Compounds
J.P. SUCHET Crystal Chemistry and Semiconduction in Transition Metal Binary Compounds 161 (1971) https://doi.org/10.1016/B978-0-12-675650-0.50011-3
Magnetoelastic interactions in hematite: Implications for geophysics
Robert C. Liebermann and Subir K. Banerjee Journal of Geophysical Research 76 (11) 2735 (1971) https://doi.org/10.1029/JB076i011p02735
Inelastic neutron scattering investigation of spin waves and magnetic interactions in α‐Fe2O3
E. J. Samuelsen and G. Shirane physica status solidi (b) 42 (1) 241 (1970) https://doi.org/10.1002/pssb.19700420125
Geophysical aspects of paleomagnetism
Michael D. Fuller C R C Critical Reviews in Solid State Sciences 1 (2) 137 (1970) https://doi.org/10.1080/10408437008243420
Magnetocrystalline Anisotropy of Pure and Doped Hematite
P. J. Besser, A. H. Morrish and C. W. Searle Physical Review 153 (2) 632 (1967) https://doi.org/10.1103/PhysRev.153.632
Influence of Changes of the Magnetocrystalline Anisotropy on the Electrical Resistivity of Ba3Co2Fe24O41
I. Bunget and M. Rosenberg physica status solidi (b) 20 (2) (1967) https://doi.org/10.1002/pssb.19670200265
Mössbauer Effect in α‐Fe2O3
F. van der Woude physica status solidi (b) 17 (1) 417 (1966) https://doi.org/10.1002/pssb.19660170147
Entropy Change at the Morin Point of a Hematite Crystal
Takejiro Kaneko and Shunya Abe Journal of the Physical Society of Japan 21 (3) 451 (1966) https://doi.org/10.1143/JPSJ.21.451
Magnetic Properties of Coordination and Organometallic Transition Metal Compounds
E. König Landolt-Börnstein - Group II Molecules and Radicals, Magnetic Properties of Coordination and Organometallic Transition Metal Compounds 2 139 (1966) https://doi.org/10.1007/10201187_24
Magnetic Properties of Coordination and Organometallic Transition Metal Compounds
E. König Landolt-Börnstein - Group II Molecules and Radicals, Magnetic Properties of Coordination and Organometallic Transition Metal Compounds 2 436 (1966) https://doi.org/10.1007/10201187_56
Polarized-Neutron Study of Hematite
R. Nathans, S. J. Pickart, H. A. Alperin and P. J. Brown Physical Review 136 (6A) A1641 (1964) https://doi.org/10.1103/PhysRev.136.A1641
Spin Arrangements and Crystal Structure, Domains, and Micromagnetics
E.F. Bertaut Spin Arrangements and Crystal Structure, Domains, and Micromagnetics 149 (1963) https://doi.org/10.1016/B978-0-12-575303-6.50011-7
Magnetic transformations in antiferromagnetic iron sesquioxide
G.G. Robbrecht and R.J. Doclo Physics Letters 3 (2) 85 (1962) https://doi.org/10.1016/0031-9163(62)90015-X
Curie Point and Origin of Weak Ferromagnetism in Hematite
A. Aharoni, E. H. Frei and M. Schieber Physical Review 127 (2) 439 (1962) https://doi.org/10.1103/PhysRev.127.439
Magnetic Properties of Hematite Single Crystals. I. Magnetization Isotherms, Antiferromagnetic Susceptibility, and Weak Ferromagnetism of a Natural Crystal
S. T. Lin Physical Review 116 (6) 1447 (1959) https://doi.org/10.1103/PhysRev.116.1447
Magnetic Domains in α−Fe2O3
H. J. Williams, R. C. Sherwood and J. P. Remeika Journal of Applied Physics 29 (12) 1772 (1958) https://doi.org/10.1063/1.1723049
Domain Walls in Antiferromagnets and the Weak Ferromagnetism ofα-Fe2O3
Yin-Yuan Li Physical Review 101 (5) 1450 (1956) https://doi.org/10.1103/PhysRev.101.1450
Magnetic properties of ferromagnetic ilmenites
T. Nagata and S. Akimoto Geofisica pura e applicata 34 (1) 36 (1956) https://doi.org/10.1007/BF02122815
Magnetostrictive Effects in an Antiferromagnetic Hematite Crystal
Helen M. A. Urquhart and J. E. Goldman Physical Review 101 (5) 1443 (1956) https://doi.org/10.1103/PhysRev.101.1443
Some New Results on Antiferromagnetism and Ferromagnetism
Louis Néel Reviews of Modern Physics 25 (1) 58 (1953) https://doi.org/10.1103/RevModPhys.25.58
Antiferromagnetism and Ferrimagnetism
Louis Néel Proceedings of the Physical Society. Section A 65 (11) 869 (1952) https://doi.org/10.1088/0370-1298/65/11/301
Crystal Structure and Antiferromagnetism in Haematite
B T M Willis and H P Rooksby Proceedings of the Physical Society. Section B 65 (12) 950 (1952) https://doi.org/10.1088/0370-1301/65/12/304